Electronic Supplementary Information:

Simultaneous adsorption of SO₂ and CO₂ in metal-

organic framework Ni(bdc)(ted)_{0.5}

Do Ngoc Son, *,⁺ Ta Thi Thuy Huong, ⁺ and Viorel Chihaia ⁺

⁺ University of Technology, VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

[‡] Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Splaiul Independentei 202, Sector 6, 060021 Bucharest, Romania

Corresponding author

*E-mail: <u>dnson@hcmut.edu.vn</u>

- 1. Molecular orbital diagram for SO₂.
- 2. Molecular orbital diagram for CO₂.

1. Molecular orbital diagram for SO₂

Scheme S1. Molecular orbital diagram for SO₂. The *4n* state is the combination of the *sp*² hybridization of the sulfur and the *p* orbitals of the oxygen atoms. This state corresponds to the highest occupied molecular orbital (HOMO) in the DOS of SO₂. The *3n* and *2n* states are the non-bonding states of the oxygen atoms, and the $1\pi^*$ state is the anti-bonding state which corresponds to the lowest unoccupied molecular orbital (LUMO) in the DOS of SO₂.

2. Molecular orbital diagram for CO₂

Scheme S2. Molecular orbital diagram for CO_2 . The $1\pi_g$ states is the non-bonding states of CO_2 which correspond to the lone pairs of the oxygen atoms. The non-bonding states correspond to the HOMO in the DOS of CO_2 . The $1\pi_u$ states are the anti-bonding states which correspond to the LUMO of CO_2 .