Supporting Information for

First synthesis of novel 2,4-bis((E)-styryl)quinoline-3-carboxylate derivatives and their antitumor activity

Wentao Gao, Zhiyuan Li, Qiqi Xu and Yang Li*

Address:

Institute of Superfine Chemicals, Bohai University, Jinzhou 121000, P. R.

China. E-mail: bhuzh@163.com

* Corresponding author

Content

General methods3
Procedure for the preparation of ethyl 4-(bromomethyl)-2-(chloromethyl)
quinoline-3-carboxylate (1)3
General procedure for the preparation of ethyl 2,4-di((<i>E</i>)-styryl
quinoline-3-carboxylate derivatives (3a-t)5
Characterization data for products 3a-t5
Experimental procedure for cancer cell growth inhibition assay (MTT
assay)16
Spectra for all the synthesised compounds 1 and 3a-t18

Experimental

General methods

The chemicals used in this work were purchased from commercial suppliers and were used without further purification. Melting points (uncorrected) were determined by using a WRS-1B melting point apparatus. 1 H (400MHz) and 13 C (100MHz) NMR spectra were recorded on an Agilent 400-MR spectrometer using CDCl₃ or DMSO- d_6 as the solvent. The reported chemical shifts (δ values) are given in parts per million downfield from tetramethylsilane (TMS) as the internal standard (NMR abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, J = coupling constant). Elemental analyses were carried out on an EA 2400II elemental analyzer (Perkin Elmer). HRMS (ESI) data were acquired on a Bruker Customer micrOTOF-Q 125 high resolution mass spectrometer using ESI ionization. The progress of reactions was monitored by thin-layer chromatography (TLC) on silica gel GF254 using ethyl acetate/petroleum ether as eluent.

Procedure for the preparation of ethyl 4-(bromomethyl)-2-(chloromethyl) quinoline-3-carboxylate (1).

o-Aminoacetophenone (**III**) (2.70 g, 20 mmol) and ethyl 4-chloro-3-oxobutanoate (3.30 g, 20 mmol) were added in a 100 ml reaction kettle and dissolved in DMF (40 ml). To this solution was added dropwise TMSCI (8.7 g, 80 mmol). The kettle was then sealed and heated at 100 °C for 10 h. After

cooling, the kettle was opened and the mixture separated into two layers; the upper one, the hexamethyldisiloxane, was decanted. And cold H₂O (20 mL) was added slowly to the residue with stirring. The resulting precipitate was filtered off and purified by recrystallization from i-PrOH to give pure ethyl 2-(chloromethyl)-4-methylquinoline-3-carboxylate (IV) in 76% yield. Subsequently, the newly-synthesized IV (3.96 g, 15 mmol) and a catalytic amount of benzoperoxide were dissolved in CCl₄ (70 mL) and heated with stirring until boiled gently. Then, a slightly excessive amount of NBS (1.85 g, 17 mmol) was added carefully in three batches to the stirred solution every 1.0 h. After addition of NBS was complete, the resulting reaction mixture was refluxed for 8 h. On completion as monitored by TLC, the reaction was cooled to room temperature, the precipitated succinimide was filtered, and the filtrate was evaporated under vacuum to dryness. The residue was subjected to column chromatography over silica gel (200-400 mesh) using hexane/ethyl acetate mixture as eluent (8:1, v/v) to give 3.91 g of 1. White solid; yield 81%; mp 89-90 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.0 Hz, 1H, ArH), 8.01 (d, J = 8.0 Hz, 1H, ArH), 7.73 (t, J = 8.4 Hz, 1H, ArH), 7.58 (t, J = 8.0 Hz, 1H, ArH)ArH), 5.00 (s, 2H, ArCH₂), 4.93 (s, 2H, ArCH₂), 4.49 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.44 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 166.84, 153.52, 147.43, 142.10, 131.25, 130.31, 130.27, 128.58, 128.42, 123.87, 62.70, 46.23, 32.66, 14.10. Anal. Calcd for C₁₄H₁₃BrClNO₂: C, 49.08; H, 3.82; N, 4.09. Found: C, 48.84; H, 3.56; N, 4.37.

General procedure for the preparation of ethyl 2,4-di((E)-styryl) quinoline-3-carboxylate derivatives (3a-t).

Ethyl 4-(bromomethyl)-2-(chloromethyl)quinoline-3-carboxylate (1) (0.343 g, 1 mmol) was dissolved in triethyl phosphite (8 mL). The resulting reaction mixture was stirred at refluxing temperature for 3 h. The conversion was monitored by TLC. After TLC indicated the complete consumption of starting meterial, the excessive triethyl phosphite was removed in vacuo, and a solution of respective aldehyde (2.2 mmol) in DMF (8 mL) and NaH (0.053 g, 2.2 mmol) were added to the residue. The resulting reaction mixture was first stirred at room temperature for 1 h and then at 90 °C for 2 h. After the reaction was complete as inferred through TLC, the reaction was quenched with 10 mL cold H_2O followed by acidification with 1 M HCl to pH = 6~7. The resulting crude product was subjected to column chromatography over silica gel (200–400 mesh) using hexane/ethyl acetate mixture as eluent (10:1, v/v) to give the desired products 3a-t.

Characterization data for products 3a-t.

Ethyl 2,4-bis((*E*)-styryl)quinoline-3-carboxylate (3a): Yellow solid; yield 83%; mp 105-106 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.23 (d, J = 8.4 Hz, 1H, ArH), 8.11 (d, J = 8.4 Hz, 1H, ArH), 8.04 (d, J = 15.6 Hz, 1H, CH=), 7.87 (t, J = 7.6 Hz, 1H, ArH), 7.81 (d, J = 16.4 Hz, 1H, CH=), 7.71-7.74 (m, 4H, ArH),

7.66 (t, J = 7.6 Hz, 1H, ArH), 7.44-7.48 (m, 4H, ArH), 7.37-7.41 (m, 2H, ArH), 7.30 (d, J = 15.6 Hz, 1H, CH=), 6.99 (d, J = 16.4 Hz, 1H, CH=), 4.43 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.26 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.43, 150.67, 147.58, 142.84, 137.78, 136.33, 136.17, 131.53, 129.70, 129.59, 129.45, 129.34, 129.30, 125.98, 125.85, 124.99, 124.14, 122.81, 62.24, 14.53. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₄NO₂: 406.1802; found: 406.1804.

Ethyl 2,4-bis((E)-2-methylstyryl)quinoline-3-carboxylate (3b): Yellow solid; yield 79%;, mp 112-113 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.27 (d, J = 8.4Hz, 1H, ArH), 8.26 (d, J = 15.6 Hz, 1H, CH=), 8.11 (d, J = 8.4 Hz, 1H, ArH), 7.65-7.73 (m, 3H, ArH), 7.85-7.90 (m, 2H, ArH), 7.27-7.33 (m, 6H, ArH), 7.21 (d, J = 16.4 Hz, 1H, CH=), 7.18 (d, J = 15.6 Hz, 1H, CH=), 4.40 (q, J = 7.2 Hz,2H, CH_2CH_3), 2.49 (s, 3H, Me), 2.36 (s, 3H, Me), 1.24 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.64, 150.81, 147.51, 143.08, 137.07, 136.37, 135.40, 135.14, 135.08, 133.68, 131.52, 131.18, 130.98, 129.79, 129.36, 129.20, 127.67, 126.95, 126.83, 126.21, 126.15, 125.95, 125.85, 125.38, 125.03, 123.83, 62.27, 20.07, 19.71, 14.43. Anal. Calcd for C₁₄H₁₃BrClNO₂: C, 49.08; H, 3.82; N, 4.09. Found: C, 48.84; H, 3.56; N, 4.37. Ethyl 2,4-bis((E)-4-methylstyryl)quinoline-3-carboxylate (3c): Yellow solid; yield 85%; mp 115-116 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.19 (d, J = 8.0 Hz, 1H, ArH), 8.08 (d, J = 8.4 Hz, 1H, ArH), 8.00 (d, J = 15.6 Hz, 1H, CH=), 7.84 (t, J = 7.6 Hz, 1H, ArH), 7.72 (d, J = 16.4 Hz, 1H, CH=), 7.58-7.65 (m, 5H, ArH), 7.25 (d, J = 7.6 Hz, 4H, ArH), 7.22 (d, J = 15.6 Hz, 1H, CH=), 6.94 (d, J = 16.4 Hz, 1H, CH=), 4.41 (q, J = 7.2 Hz, 2H, CH₂CH₃), 2.34 (s, 6H, 2×Me), 1.25 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.55, 150.80, 147.60, 142.80, 139.27, 138.92, 137.67, 136.10, 133.64, 133.45, 131.39, 130.02, 129.86, 129.64, 127.85, 127.48, 127.40, 125.89, 125.74, 124.95, 123.10, 121.67, 62.15, 21.40, 14.53; Anal. Calcd for C₃₀H₂₇NO₂: C, 83.11; H, 6.28; N, 3.23. Found: C, 83.34; H, 6.53; N, 3.08.

Ethyl 2,4-bis((*E*)-2-methoxystyryl)quinoline-3-carboxylate (3d): Yellow solid; yield 76%; mp 136-137 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.26 (d, J = 15.6 Hz, 1H, CH=), 8.22 (d, J = 8.0 Hz, 1H, ArH), 8.10 (d, J = 8.4 Hz, 1H, ArH), 7.83-7.87 (m, 2H, ArH), 7.78 (d, J = 16.4 Hz, 1H, CH=), 7.62-7.68 (m, 2H, ArH), 7.40 (d, J = 15.6 Hz, 1H, CH=), 7.34-7.38 (m, 2H, ArH), 7.31 (d, J = 16.4 Hz, 1H, CH=), 7.02-7.13 (m, 4H, ArH), 4.42 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.92 (s, 3H, OMe), 3.86 (s, 3H, OMe), 1.29 (t, J = 7.2 Hz, 3H, CH₂CH₃); 13 C NMR (100 MHz, DMSO- d_6): δ 168.70, 158.00, 157.27, 151.16, 147.59, 142.71, 132.39, 131.42, 131.37, 130.90, 130.78, 129.71, 128.51, 127.50, 127.45, 125.82, 125.75, 124.90, 124.80, 124.78, 124.61, 122.79, 121.28, 121.15, 112.11, 111.96, 62.10, 55.99, 14.34. Anal. Calcd for $C_{30}H_{27}NO_4$: C, 77.40; H, 5.85; N, 3.01. Found: C, 77.57; H, 5.71; N, 3.24.

Ethyl 2,4-bis((*E*)**-4-methoxystyryl)quinoline-3-carboxylate (3e):** Yellow solid; yield 80%; mp 140-141 °C. 1 H NMR (400 MHz, DMSO- d_{6}): δ 8.20 (d, J = 8.4 Hz, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.99 (d, J = 15.6 Hz, 1H, CH=),

7.83 (t, J = 7.6 Hz, 1H, ArH), 7.60-7.67 (m, 6H, ArH), 7.12 (d, J = 15.6 Hz, 1H, CH=), 7.01 (d, J = 8.4 Hz, 2H, ArH), 6.99 (d, J = 8.8 Hz, 2H, ArH), 6.93 (d, J = 16.4 Hz, 1H, CH=), 4.42 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.81 (s, 6H, 2×OMe), 1.26 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ 168.68, 160.53, 160.29, 150.96, 147.63, 142.81, 137.39, 135.81, 131.31, 129.56, 129.44, 129.06, 129.02, 128.84, 127.20, 125.90, 125.61, 124.89, 121.70, 120.19, 114.88, 114.68, 62.12, 55.67, 55.66, 14.56. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₀H₂₈NO₄: 466.2013; found: 466.2018.

Ethyl 2,4-bis((*E*)-4-ethoxystyryl)quinoline-3-carboxylate (3f): Yellow solid; yield 71%; mp 145-146 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.20 (d, J = 8.4 Hz, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.98 (d, J = 15.6 Hz, 1H, CH=), 7.83 (t, J = 7.6 Hz, 1H, ArH), 7.59-7.64 (m, 6H, ArH), 7.11 (d, J = 15.6 Hz, 1H, CH=), 6.98 (d, J = 7.6 Hz, 4H, ArH), 6.93 (d, J = 16.4 Hz, 1H, CH=), 4.42 (q, J = 7.2 Hz, 2H, CH₂CH₃), 4.06 (q, J = 7.2 Hz, 4H, 2×OCH₂CH₃), 1.34 (t, J = 7.2 Hz, 6H, 2×OCH₂CH₃), 1.26 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.68, 159.84, 159.59,150.97, 147.61, 142.83, 137.43, 135.85, 131.34, 129.55, 129.46, 129.04, 128.92, 128.68, 127.21,125.92, 125.59, 124.89, 121.59, 120.10, 115.29, 115.10, 63.62, 63.59, 62.12, 19.00, 15.05, 14.56. Anal. Calcd for C₃₂H₃₁NO₄: C, 77.87; H, 6.33; N, 2.84. Found: C, 78.16; H, 6.13; N, 2.73.

Ethyl 2,4-bis((*E*)-2,4-dimethylstyryl)quinoline-3-carboxylate (3g): Yellow solid; yield 84%; mp 132-133 °C. 1 H NMR (400 MHz, DMSO- d_6): δ 8.24 (d, J =

8.4 Hz, 1H, ArH), 8.21 (d, J = 15.6 Hz, 1H, CH=),8.09 (d, J = 8.4 Hz, 1H, ArH), 7.85 (t, J = 7.6 Hz, 1H, ArH), 7.79 (d, J = 8.0 Hz, 1H, ArH), 7.67 (d, J = 15.6 Hz, 1H, CH=),7.65 (s, 1H, ArH), 7.57 (d, J = 7.6 Hz, 1H, ArH), 7.07-7.18 (m, 6H, ArH), 4.38 (q, J = 7.2 Hz, 2H, CH₂CH₃), 2.44 (s, 3H, Me), 2.32 (s, 3H, Me), 2.30 (s, 6H, 2×Me), 1.22 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.75, 150.95, 147.52, 143.06, 138.93, 138.67, 136.95, 136.23, 135.24, 133.56, 132.33, 132.25, 131.83, 131.60, 131.41, 129.74, 127.63, 127.50, 126.11, 125.87, 125.75, 124.98, 124.31, 122.68, 62.20, 21.27, 21.24, 19.99, 19.61, 14.42. Anal. Calcd for C₃₂H₃₁NO₂: C, 83.26; H, 6.77; N, 3.03. Found: C, 82.98; H, 6.88; N, 3.32.

Ethyl 2,4-bis((*E*)-3,4-dimethoxystyryl)quinoline-3-carboxylate (3h): Yellow solid; yield 79%; mp 116-117 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.24 (d, J = 8.4 Hz, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.98 (d, J = 15.6 Hz, 1H, CH=), 7.84 (t, J = 7.6 Hz, 1H, ArH), 7.70 (d, J = 16.4 Hz, 1H, CH=), 7.64 (t, J = 7.6 Hz, 1H, ArH), 7.42 (d, J = 1.2 Hz, 1H, ArH), 7.25-7.28 (m, 2H, ArH), 7.14 (d, J = 15.6 Hz, 1H, CH=), 7.13 (d, J = 1.2 Hz, 1H, ArH), 7.02 (d, J = 8.4 Hz, 1H, ArH), 6.99 (d, J = 8.4 Hz, 1H, ArH), 6.93 (d, J = 16.4 Hz, 1H, CH=), 4.44 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.87 (s, 3H, OMe), 3.85 (s, 3H, OMe), 3.81 (s, 3H, OMe), 3.80 (s, 3H, OMe), 1.31 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.68, 151.02, 150.32, 150.13, 149.46, 149.37, 147.66, 142.84, 137.83, 136.22, 131.34, 129.54, 129.32, 129.07, 127.18, 125.99, 125.61, 124.91, 121.96, 121.59, 121.39, 120.37, 112.27, 111.99, 110.61,

109.76, 62.13, 56.06, 55.96, 55.94, 55.86, 14.58. Anal. Calcd for C₃₂H₃₁NO₆: C, 73.13; H, 5.94; N, 2.66. Found: C, 72.98; H, 5.87; N, 2.74.

Ethyl 2,4-bis((E)-2,5-dimethoxystyryl)quinoline-3-carboxylate (3i): Yellow solid; yield 80%; mp 125-126 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.25 (d, J = 8.4 Hz, 1H, ArH), 8.20 (d, J = 15.6 Hz, 1H, CH=), 8.09 (d, J = 8.4 Hz, 1H, ArH), 7.86 (t, J = 7.6 Hz, 1H, ArH), 7.84 (d, J = 16.4 Hz, 1H, CH=), 7.65 (t, J = 7.6Hz, 1H, ArH), 7.46 (d, J = 2.8 Hz, 1H, ArH), 7.38 (d, J = 15.6 Hz, 1H, CH=), 7.29 (d, J = 16.4 Hz, 1H, CH=), 7.20 (d, J = 2.8 Hz, 1H, ArH), 7.05 (d, J = 8.8Hz, 1H, ArH), 7.02 (d, J = 8.8 Hz, 1H, ArH), 6.96 (d, J = 8.8 Hz, 1H, ArH), 6.94 (d, J = 8.4 Hz, 1H, ArH), 4.42 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.87 (s, 3H, OMe),3.81 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.78 (s, 3H, OMe), 1.31 (t, J = 7.2 Hz, 3H, CH_2CH_3); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.65, 153.78, 153.64, 152.41, 151.66, 151.15, 147.59, 142.75, 132.10, 131.40, 131.36, 129.69, 127.45, 125.86, 125.82, 125.41, 125.32, 125.25, 124.94, 123.10, 116.12, 113.28, 113.22, 112.14, 62.09, 56.47, 56.38, 56.02, 55.83, 14.34. Anal. Calcd for C₃₂H₃₁NO₆: C, 73.13; H, 5.94; N, 2.66. Found: C, 73.34; H, 6.08; N, 2.51. Ethyl 2,4-bis((E)-2-(benzo[d][1,3]dioxol-5-yl)vinyl)quinoline-3-carboxylate (3j): Yellow solid; yield 75%; mp 163-164 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.21 (d, J = 8.4 Hz, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.94 (d, J = 15.6 Hz, 1H, CH=), 7.84 (t, J = 7.2 Hz, 1H, ArH), 7.67 (d, J = 16.4 Hz, 1H, CH=), 7.62 (d, J = 8.4 Hz, 1H, ArH), 7.35 (s, 1H, ArH), 7.51 (s, 1H, ArH), 7.21 (d, J = 8.4 Hz, 1H, ArH), 7.35 (s, 1H, ArH), 7.51 (s, 1H, ArH), 7.51 (d, J = 8.4 Hz, 1H, ArH), 7.51 (d, J = 8.

8.4 Hz, 1H, ArH), 7.11 (d, J = 15.6 Hz, 1H, CH=), 7.08 (d, J = 8.0 Hz, 1H, ArH),

6.96-7.00 (m, 2H, ArH), 6.89 (d, J = 16.4 Hz, 1H, CH=), 6.10 (s, 4H, 2×OCH₂O), 4.42 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.26 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.51, 150.92, 148.67, 148.47, 148.39, 147.58, 142.77, 137.44, 135.99, 131.38, 130.92, 130.70, 129.56, 127.28, 125.95, 125.63, 124.92, 123.67, 123.34, 122.34, 120.81, 109.10, 108.86, 106.67, 106.22, 101.85, 101.79, 62.17, 14.53. Anal. Calcd for C₃₀H₂₃NO₆: C, 73.01; H, 4.70; N, 2.84. Found: C, 73.22; H, 4.77; N, 2.70.

Ethyl 2,4-bis((*E*)-3,4,5-trimethoxystyryl)quinoline-3-carboxylate (3k): Yellow solid; yield 77%; mp 125-126 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.25 (d, J = 8.4 Hz, 1H, ArH), 8.08 (d, J = 8.4 Hz, 1H, ArH), 7.98 (d, J = 15.6 Hz, 1H, CH=), 7.87 (t, J = 8.0 Hz, 1H, ArH), 7.79 (d, J = 16.4 Hz, 1H, CH=), 7.67 (t, J = 7.6 Hz, 1H, ArH), 7.21 (d, J = 15.6 Hz, 1H, CH=), 7.04 (s, 2H, ArH), 7.02 (s, 2H, ArH), 6.93 (d, J = 16.4 Hz, 1H, CH=), 4.48 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.87 (s, 12H, 4×OMe), 3.71 (s, 6H, 2×OMe), 1.36 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.44, 153.58, 153.56, 150.82, 147.64, 142.80, 138.87, 138.63, 137.99, 136.35, 132.08, 131.85, 131.50, 129.59, 127.45, 126.06, 125.78, 124.95, 123.62, 122.15, 105.21, 104.99, 62.23, 60.55, 56.44, 56.31, 14.60. HRMS (ESI): m/z [M+H]+ calcd for C₃₄H₃₆NO₈: 586.2435; found: 586.2439.

Ethyl 2,4-bis((*E*)-2,4,5-trimethoxystyryl)quinoline-3-carboxylate (3I): Yellow solid; yield 70%; mp 113-114 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.26 (d, J = 8.4 Hz, 1H, ArH), 8.18 (d, J = 15.6 Hz, 1H, CH=), 8.05 (d, J = 8.0

Hz, 1H, ArH), 7.82 (t, J = 7.6 Hz, 1H, ArH), 7.70 (d, J = 16.4 Hz, 1H, CH=), 7.62 (t, J = 7.6 Hz, 1H, ArH), 7.47 (s, 1H, ArH), 7.30 (d, J = 15.6 Hz, 1H, CH=), 7.22 (d, J = 15.6 Hz, 1H, CH=), 7.19 (s, 1H, ArH), 6.78 (s, 1H, ArH), 6.75 (s, 1H, ArH), 4.43 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.92 (s, 3H, OMe), 3.87 (s, 3H, OMe), 3.86 (s, 3H, OMe), 3.85 (s, 3H, OMe), 3.84 (s, 3H, OMe), 3.80 (s, 3H, OMe), 1.34 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.98, 153.35, 152.47, 151.64, 151.32, 151.29, 147.66, 143.52, 143.30, 142.83, 131.86, 131.25, 131.17, 129.51, 126.91, 125.83, 125.47, 124.83, 122.36, 119.78, 116.26, 115.99, 111.67, 110.48, 98.31, 98.27, 61.93, 56.80, 56.77, 56.65, 56.44, 56.22, 56.19, 14.38. Anal. Calcd for $C_{34}H_{35}NO_8$: C, 69.73; H, 6.02; N, 2.39. Found: C, 69.44; H, 5.91; N, 2.45.

Ethyl 2,4-bis((*E*)-2,6-dichlorostyryl)quinoline-3-carboxylate (3m): Yellow solid; yield 78%; mp 161-162 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.28 (d, J = 8.0 Hz, 1H, ArH), 8.15 (d, J = 8.4 Hz, 1H, ArH), 8.09 (d, J = 16.0 Hz, 1H, CH=), 7.90 (t, J = 7.6 Hz, 1H, ArH), 7.73 (t, J = 7.6 Hz, 1H, ArH), 7.66 (d, J = 16.4 Hz, 1H, CH=), 7.58-7.63 (m, 4H, ArH), 7.37-7.43 (m, 3H, ArH), 6.94 (d, J = 16.4 Hz, 1H, CH=), 4.39 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.27 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 167.85, 149.63, 147.52, 142.06, 134.30, 134.03, 133.45, 133.17, 132.33, 131.86, 131.75, 131.60, 130.80, 130.69, 130.07, 129.70, 129.60, 129.47, 128.49, 126.09, 125.95, 124.99, 62.68, 14.31. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{28}H_{20}$ 35Cl₄NO₂: 544.0214; found: 544.0290.

Ethyl 2,4-bis((E)-4-bromostyryl)quinoline-3-carboxylate (3n): Yellow solid; yield 84%; mp 121-122 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.20 (d, J = 8.0 Hz, 1H, ArH), 8.09 (d, J = 8.4 Hz, 1H, ArH), 7.98 (d, J = 15.6 Hz, 1H, CH=), 7.87 (t, J = 7.6 Hz, 1H, ArH), 7.83 (d, J = 16.4 Hz, 1H, CH=), 7.63-7.67 (m, 9H, ArH), 7.31 (d, J = 15.6 Hz, 1H, CH=), 6.94 (d, J = 16.4 Hz, 1H, CH=), 4.41 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.23 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.25, 150.50, 147.56, 142.77, 136.47, 135.60, 135.44, 134.91, 132.32, 132.20, 131.61, 129.87, 129.70, 129.53, 127.74, 126.01, 125.80, 125.00, 124.95, 123.85, 122.68, 122.46, 62.28, 14.52. Anal. Calcd for C₂₈H₂₁Br₂NO₂: C, 59.70; H, 3.76; N, 2.49. Found: C, 59.88; H, 3.58; N, 2.42. Ethyl 2,4-bis((E)-2-(naphthalen-1-yl)vinyl)quinoline-3-carboxylate (30): Yellow solid; yield 75%; mp 170-172 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.86 (d, J = 15.6 Hz, 1H, CH=), 8.34 (t, J = 7.6 Hz, 2H, ArH), 8.22 (d, J = 8.4Hz, 1H, ArH), 8.18 (d, J = 8.0 Hz, 1H, ArH), 8.12 (d, J = 7.6 Hz, 1H, ArH), 8.00-8.04 (m, 4H, ArH), 7.89-7.96 (m, 3H, ArH), 7.81 (d, J = 16.0 Hz, 1H, CH=), 7.55-7.73 (m, 7H, ArH), 7.41 (d, J = 15.6 Hz, 1H, CH=), 4.40 (q, J = 7.2Hz, 2H, CH₂CH₃), 1.19 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.77, 150.77, 147.63, 143.22, 134.70, 133.87, 133.76, 133.46, 133.36, 132.75, 131.63, 131.35, 131.05, 129.90, 129.80, 129.59, 129.20, 129.12, 127.84, 127.37, 127.21, 127.07, 126.71, 126.61, 126.38, 126.29, 126.07, 125.70, 125.20, 124.80, 124.71, 123.68, 123.55, 62.39, 14.42. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₂₈NO₂: 506.2115; found: 506.2111.

Ethyl 2,4-bis((*E*)-2-(naphthalen-2-yl)vinyl)quinoline-3-carboxylate (3p): Yellow solid; yield 78%; mp 173-175 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.29 (d, J = 8.4 Hz, 1H, ArH), 8.23 (d, J = 8.8 Hz, 1H, ArH), 8.20 (s, 1H, ArH), 8.15 (d, J = 8.8 Hz, 1H, ArH), 8.12 (s, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.88-8.01 (m, 9H, ArH), 7.69 (t, J = 7.6 Hz, 1H, ArH), 7.55-7.58 (m, 4H, ArH), 7.45 (d, J = 15.6 Hz, 1H, CH=), 7.17 (d, J = 16.4 Hz, 1H, CH=), 4.47 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.27 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.53, 150.77, 147.67, 142.89, 137.79, 136.27, 133.96, 133.75, 133.63, 133.54, 131.59, 129.76, 129.09, 129.02, 128.88, 128.75, 128.63, 128.21, 128.11, 127.66, 127.23, 127.11, 126.03, 125.87, 125.04,124.52, 124.01, 123.32, 62.33, 14.53. Anal. Calcd for C₃₆H₂₇NO₂: C, 85.52; H, 5.38; N, 2.77. Found: C, 85.21; H, 5.54; N, 3.07.

Ethyl 2,4-bis((*E*)-2-(furan-2-yl)vinyl)quinoline-3-carboxylate (3q): Yellow solid; yield 76%; mp 160-161 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.15 (d, J = 8.4 Hz, 1H, ArH), 8.04 (d, J = 8.4 Hz, 1H, ArH), 7.88 (d, J = 15.6 Hz, 1H, CH=), 7.83-7.86 (m, 3H, ArH), 7.63 (t, J = 7.6 Hz, 1H, ArH), 7.45 (d, J = 16.4 Hz, 1H, CH=), 7.04 (d, J = 15.6 Hz, 1H, CH=), 6.90 (d, J = 15.6 Hz, 1H, CH=), 6.88 (d, J = 3.6 Hz, 1H, ArH), 6.79 (d, J = 3.2 Hz, 1H, ArH), 6.62-6.65 (m, 2H, ArH), 4.43 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.29 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.47, 152.22, 151.83, 150.20, 147.68, 145.13, 144.75, 141.81, 131.52, 129.64, 127.61, 125.79, 125.65, 125.46, 124.60, 123.44, 121.23, 119.74, 114.01, 113.02, 112.75, 112.33, 62.27, 14.34. HRMS

(ESI): m/z [M+H]⁺ calcd for C₂₄H₂₀NO₄: 386.1387; found: 386.1369.

Ethyl 2,4-bis((*E*)-2-(thiophen-2-yl)vinyl)quinoline-3-carboxylate (3r): Yellow solid; yield 72%; mp 164-166 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.19 (d, J = 15.6 Hz, 1H, CH=), 8.16 (d, J = 8.4 Hz, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.85 (t, J = 7.6 Hz, 1H, ArH), 7.63-7.66 (m, 3H, ArH), 7.50 (d, J = 3.2 Hz, 1H, ArH), 7.43 (d, J = 16.4 Hz, 1H, CH=), 7.40 (d, J = 3.6 Hz, 1H, ArH), 7.19 (d, J = 16.4 Hz, 1H, CH=), 7.12-7.16 (m, 2H, ArH), 6.98 (d, J = 15.6 Hz, 1H, CH=), 4.44 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.33 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.38, 150.20, 147.71, 141.99, 141.41, 141.18, 131.57, 131.21, 130.60, 129.61, 129.30, 129.25, 128.96, 128.65, 128.05, 127.81, 127.61, 125.83, 125.41, 124.67, 122.86, 121.13, 62.29, 14.59. Anal. Calcd for C₂₄H₁₉NO₂S₂: C, 69.04; H, 4.59; N, 3.35. Found: C, 68.70; H, 4.89; N, 3.72.

Ethyl 2,4-bis((*E*)-2-(pyridin-2-yl)vinyl)quinoline-3-carboxylate (3s): Yellow solid; yield 73%; mp 170-172 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.66-8.68 (m, 2H, ArH), 8.13-8.20 (m, 3H, ArH), 8.06 (d, J = 15.6 Hz, 1H, CH=), 7.83-7.91 (m, 4H, ArH), 7.67-7.73 (m, 3H, ArH), 7.39 (d, J = 8.0 Hz, 1H, ArH), 7.35 (d, J = 8.0 Hz, 1H, ArH), 7.10 (d, J = 16.0 Hz, 1H, CH=), 4.42 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.25 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ 168.24, 153.99, 153.93, 150.38, 150.24, 150.20, 147.66, 142.34, 137.60, 137.59, 137.53, 135.41, 131.70, 129.89, 128.11, 127.50, 126.27, 126.06, 125.81, 124.97, 124.83, 124.10, 124.05, 123.55, 62.31, 14.41. Anal.

Calcd for $C_{26}H_{21}N_3O_2$: C, 76.64; H, 5.19; N, 10.31. Found: C, 76.99; H, 4.94; N, 9.99.

Ethyl 2,4-bis((*E*)-ferrocenylvinyl)quinoline-3-carboxylate (3t): Purple solid; yield 71%; mp 185-186 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.18 (d, J = 8.4 Hz, 1H, ArH), 8.04 (d, J = 8.4 Hz, 1H, ArH), 7.84 (t, J = 7.6 Hz, 1H, ArH), 7.82 (d, J = 16.4 Hz, 1H, CH=), 7.63 (t, J = 7.6 Hz, 1H, ArH), 7.30 (d, J = 16.4 Hz, 1H, CH=), 6.84 (d, J = 15.6 Hz, 1H, CH=), 6.78 (d, J = 15.6 Hz, 1H, CH=), 4.73 (s, 2H, Fc-H), 4.69 (s, 2H, Fc-H), 4.56 (q, J = 7.2 Hz, 2H, CH₂CH₃), 4.46 (s, 2H, Fc-H), 4.42 (s, 2H, Fc-H), 4.24 (s, 5H, Fc-H), 4.19 (s, 5H, Fc-H), 1.47 (t, J = 7.2 Hz, 3H, CH₂CH₃); 13 C NMR (100 MHz, DMSO- d_6): δ 168.90, 150.97, 147.86, 142.06, 137.70, 136.30, 131.18, 129.47, 126.88, 125.65, 124.59, 124.34, 121.37, 119.10, 70.51, 70.13, 69.74, 69.56, 68.27, 67.96, 62.10, 14.67. HRMS (ESI): m/z [M+H]⁺ calcd for C_{36} H₃₂Fe₂NO₂: 622.1126; found: 622.1119.

Experimental procedure for cancer cell growth inhibition assay (MTT assay)

Cell culture: A549, HT29, and T24 cells were cultured on Cell culture flask using 2 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) and 1.0 mM sodium pyruvate in the Roswell Park Memorial Institute (RPMI) 1640 nutrient medium supplemented with 0.5 mg/ml G418 and 10%

heat-inactivated fetal calf serum (FCS) (pH 7.2).

MTT assay: Cytotoxicity of the newly-synthesized compounds was investigated by MTT assay, in comparison to cisplatin (CDDP). Briefly, A549, HT29 and T24 cells were cultured in culture medium containing 10% fetal calf serum, and been in the logarithmic growth phase. The three cell types were seeded in 96-well culture platet at the cell density of 5×10⁴ cells per well in 100 μL of culture medium at 37 °C in 5% CO₂ incubator for 24 h seeding. The stock solutions of test compounds **3** were prepared in DMSO. After incubation, the cells were treated with different concentrations of the tested compounds, made by serial dilution in culture medium, and incubated for 72 h with each concentration located three wells. Then the drug containing medium was removed and replaced by 100 µL fresh medium with 0.5 mg/mL MTT solution. After 4 h incubation, the medium with MTT was removed and 100 µL DMSO was added to each well. The plates were gently agitated until the color reaction was uniform. The OD values were measured using SPECTRA max 190Cell microplate reader under 490 nm (for absorbance of MTT formazan) and 630 nm (for the reference wavelength). Cell growth inhibition rate formula is (AC-AT)/AC×100%. AC, absorbance value of the blank control group; AT, absorbance value of the experimental group. The IC₅₀ was calculated using GraphPad Prism version 6.00 software from the non-linear curve.

Spectra for all the synthesised compounds 1 and 3a-t

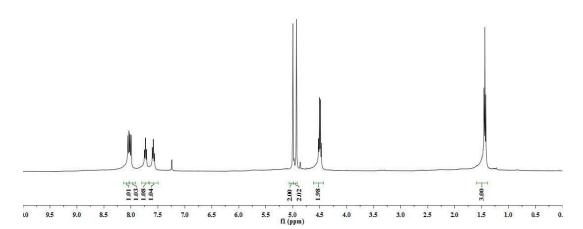


Fig. S1 ¹H NMR spectrum of 1

Fig. S2 ¹³C NMR spectrum of 1

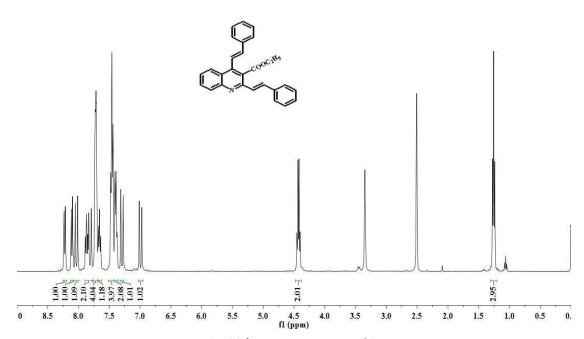


Fig. S3 ¹H NMR spectrum of 3a

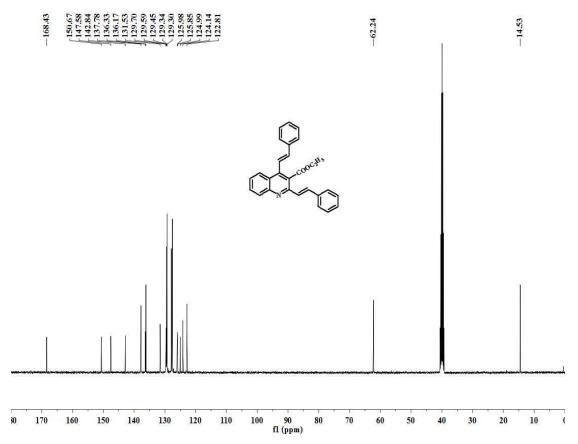


Fig. S4 ¹³C NMR spectrum of 3a

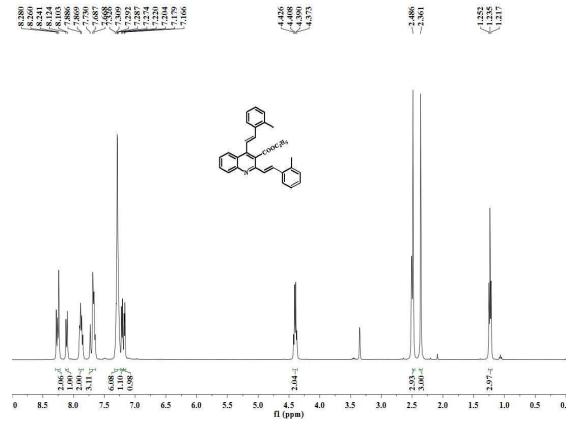


Fig. S5 ¹H NMR spectrum of 3b

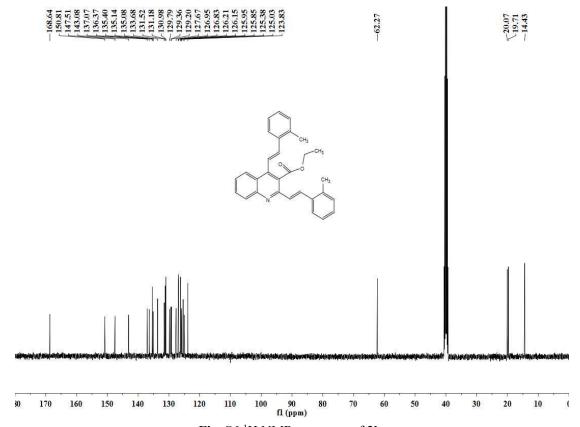


Fig. S6 1 H NMR spectrum of 3b

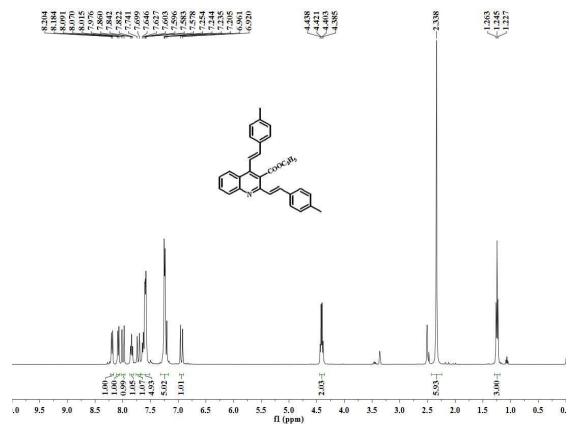


Fig. S7 ¹H NMR spectrum of 3c

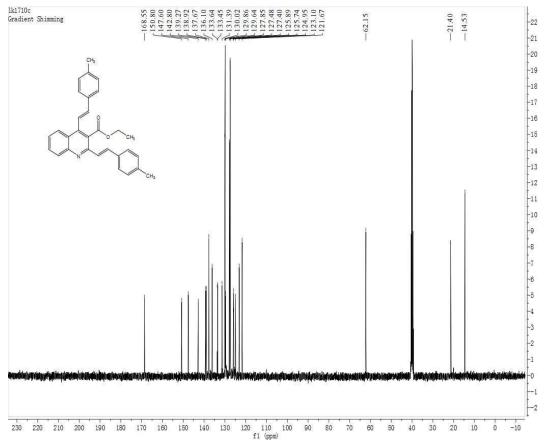


Fig. S8 ¹³C NMR spectrum of 3c

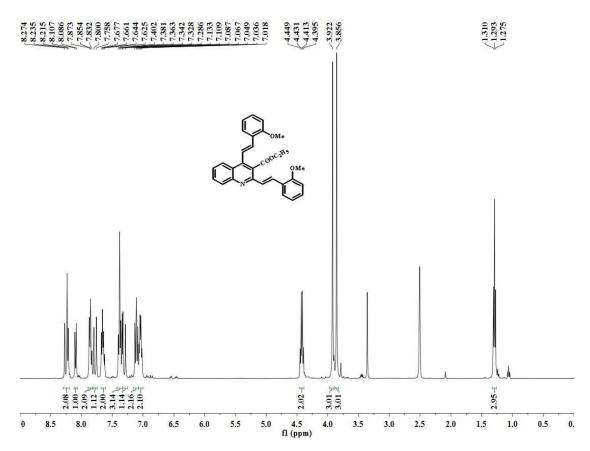


Fig. S9 ¹H NMR spectrum of 3d

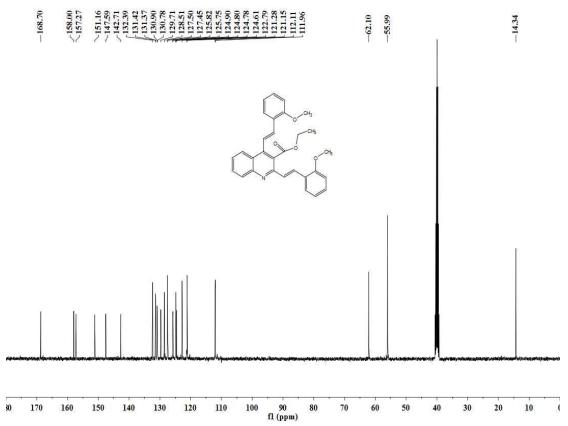


Fig. S10 ¹³C NMR spectrum of 3d

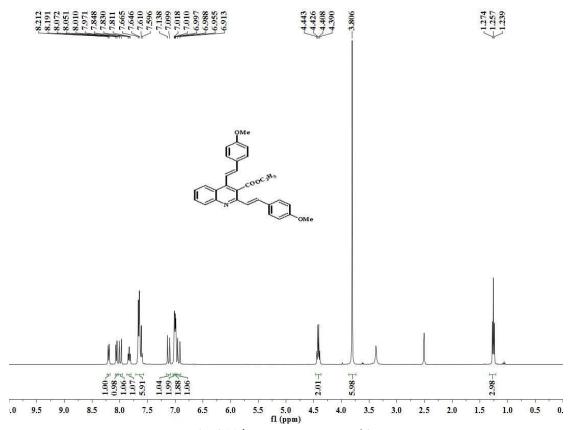


Fig. S11 ¹H NMR spectrum of 3e

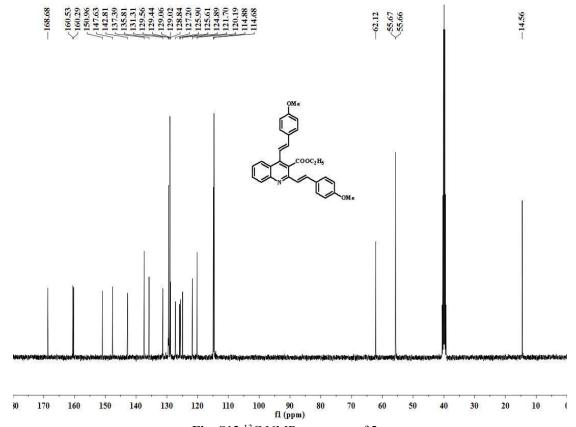


Fig. S12 13 C NMR spectrum of 3e

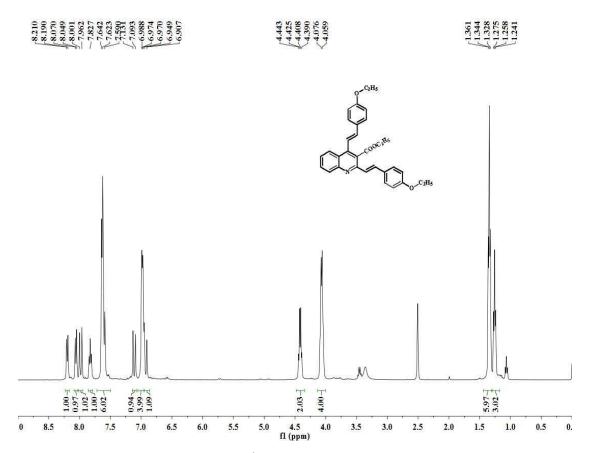


Fig. S13 ¹H NMR spectrum of 3f

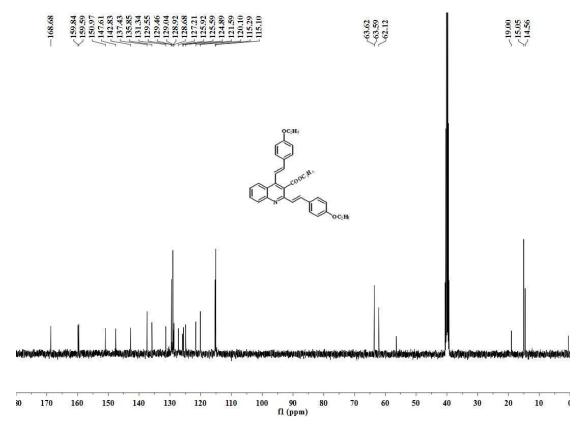


Fig. S14 ¹³C NMR spectrum of 3f

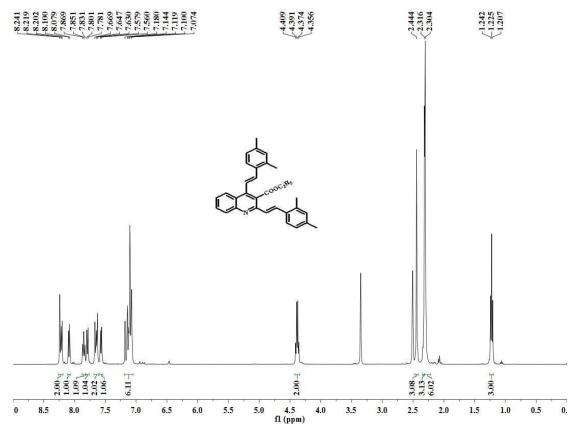


Fig. S15 1 H NMR spectrum of 3g

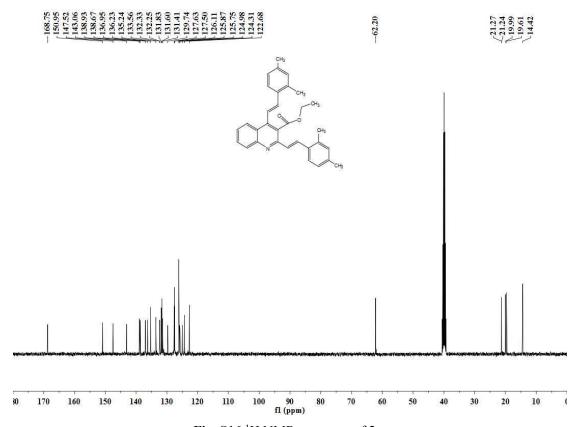


Fig. S16 1 H NMR spectrum of 3g

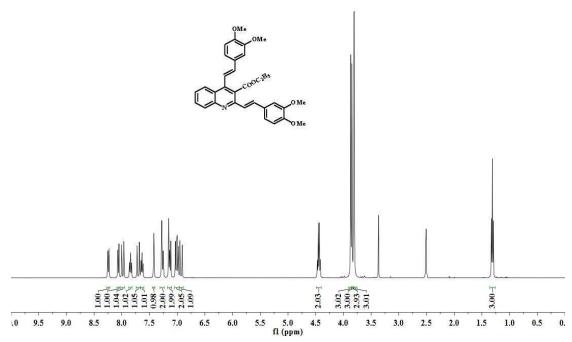


Fig. S17 ¹H NMR spectrum of 3h

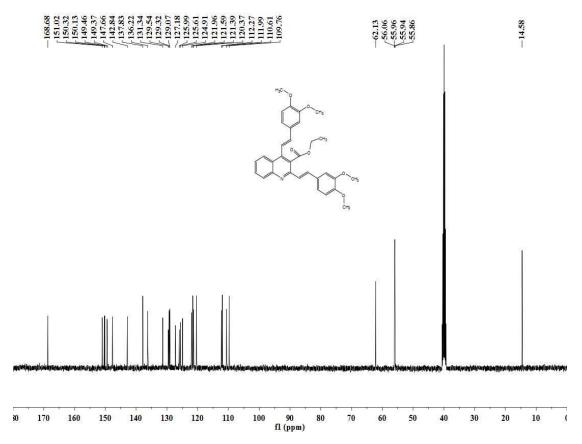


Fig. S18 ¹³C NMR spectrum of 3h

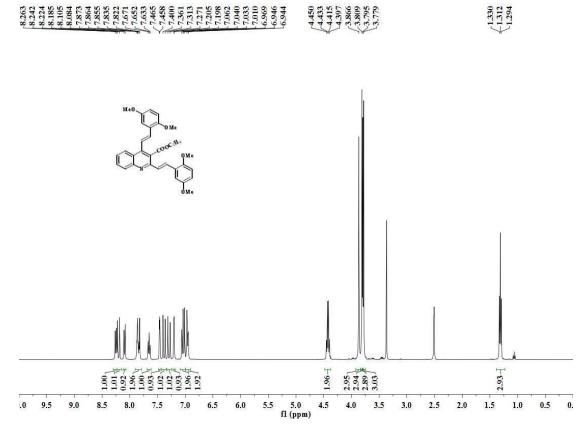


Fig. S19 1 H NMR spectrum of 3i

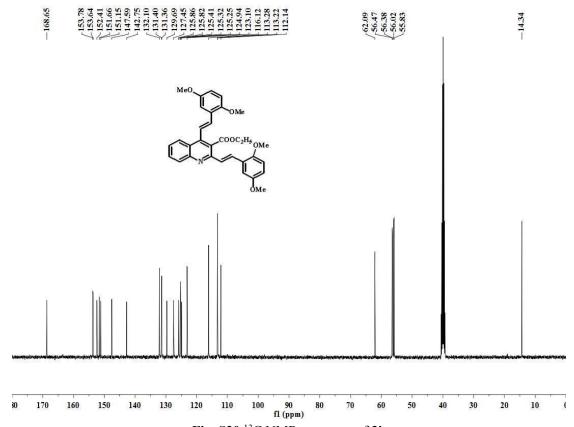


Fig. S20 ¹³C NMR spectrum of 3i

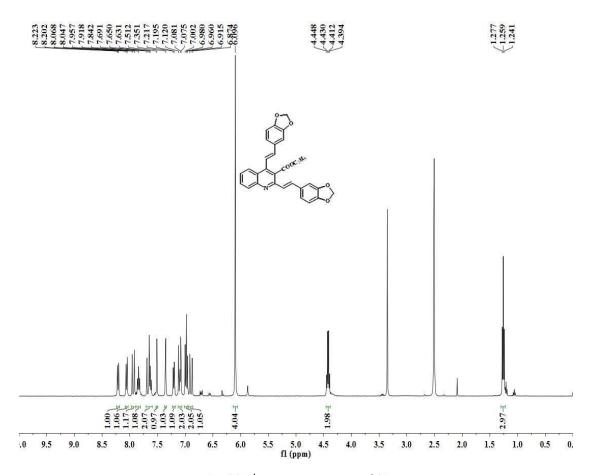


Fig. S21 ¹H NMR spectrum of 3j

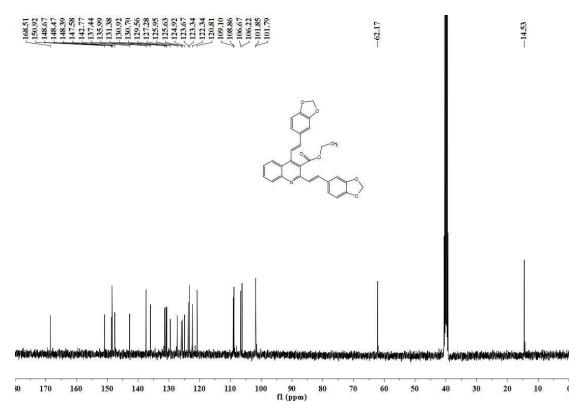


Fig. S22 ¹³C NMR spectrum of 3j

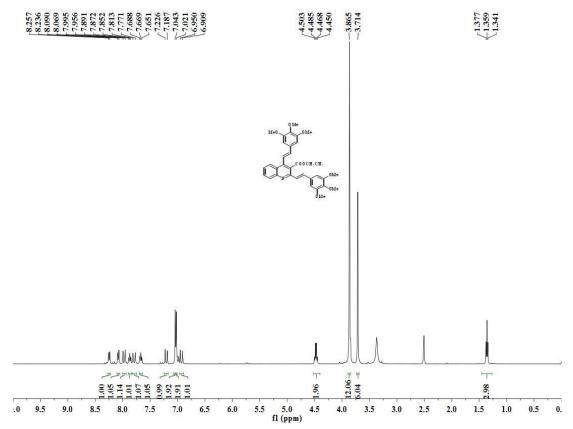


Fig. S23 ¹H NMR spectrum of 3k

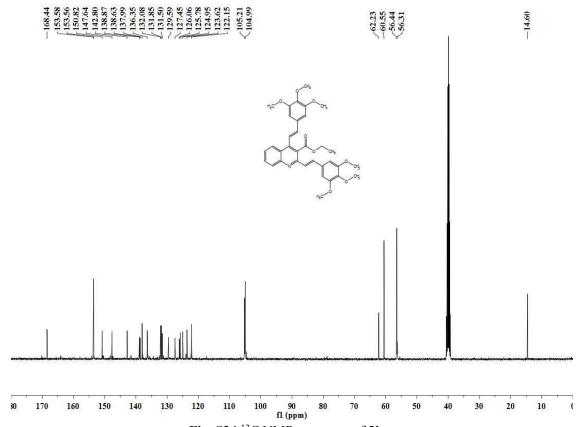


Fig. S24 ¹³C NMR spectrum of 3k

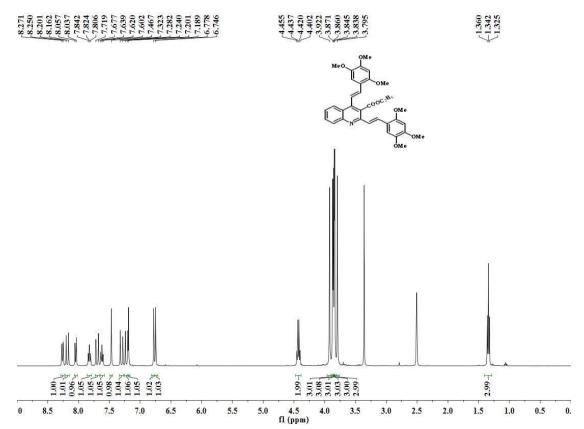


Fig. S25 ¹H NMR spectrum of 31

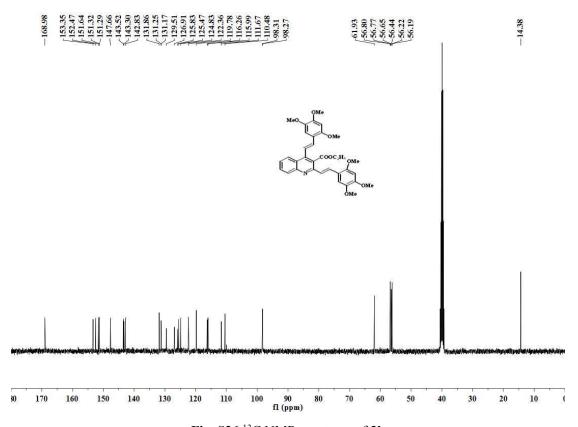


Fig. S26 ¹³C NMR spectrum of 31

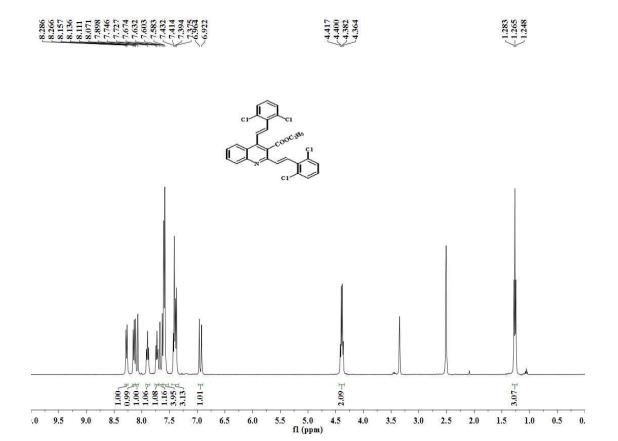


Fig. S27 1 H NMR spectrum of 3m

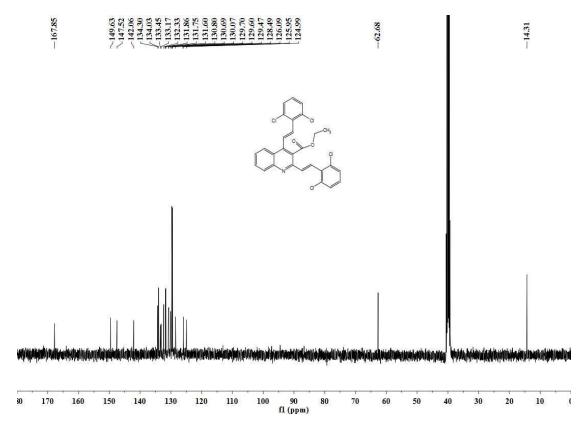


Fig. S28 ¹³C NMR spectrum of 3m

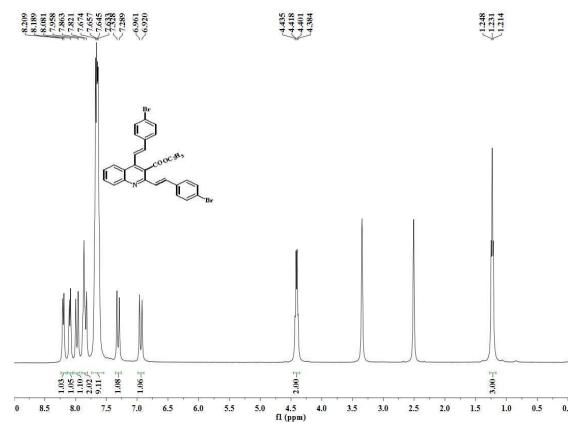


Fig. S29 ¹H NMR spectrum of 3n

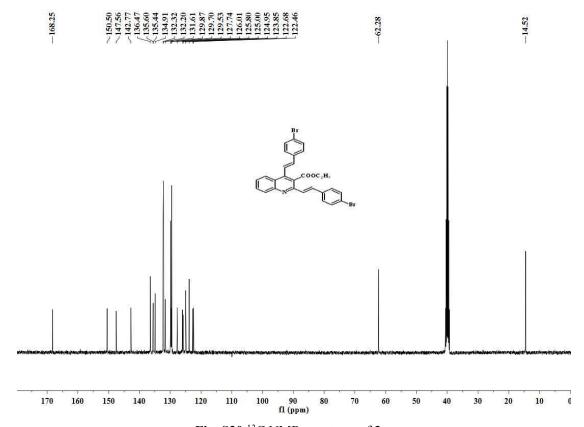


Fig. S30 13 C NMR spectrum of 3n

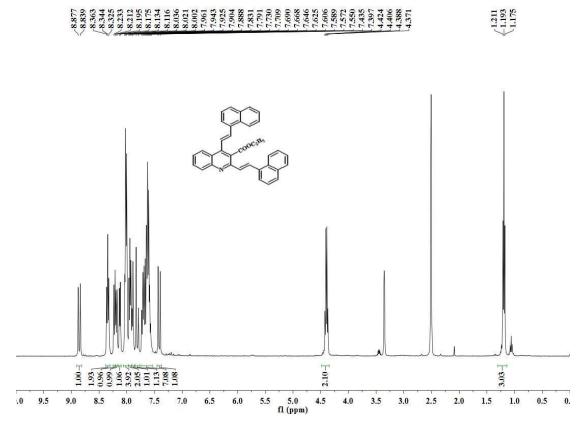


Fig. S31 ¹H NMR spectrum of 30

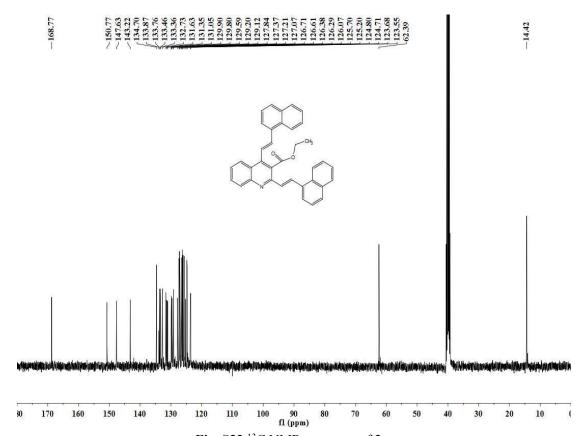
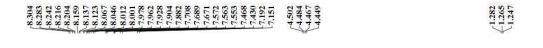



Fig. S32 ¹³C NMR spectrum of 30

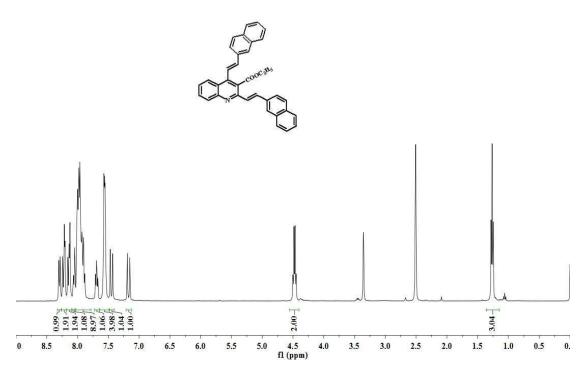


Fig. S33 ¹H NMR spectrum of 3p

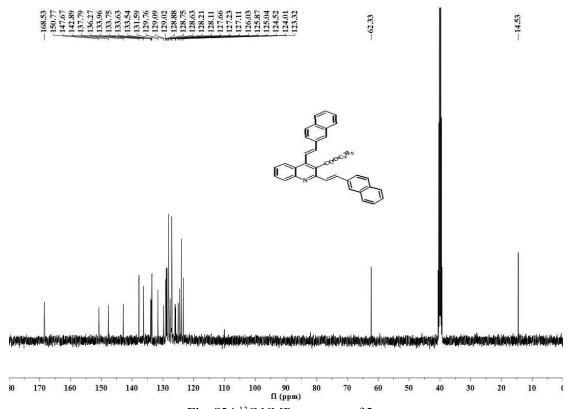


Fig. S34 ¹³C NMR spectrum of 3p

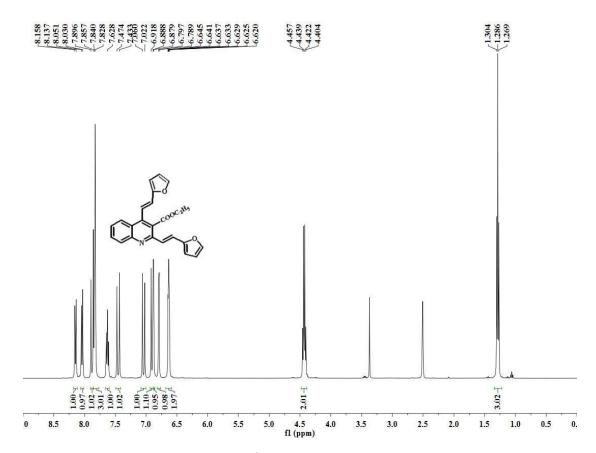


Fig. S35 ¹H NMR spectrum of 3q

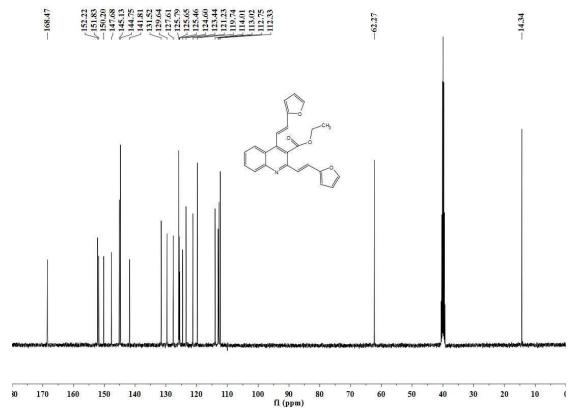


Fig. S36 ¹³C NMR spectrum of 3q

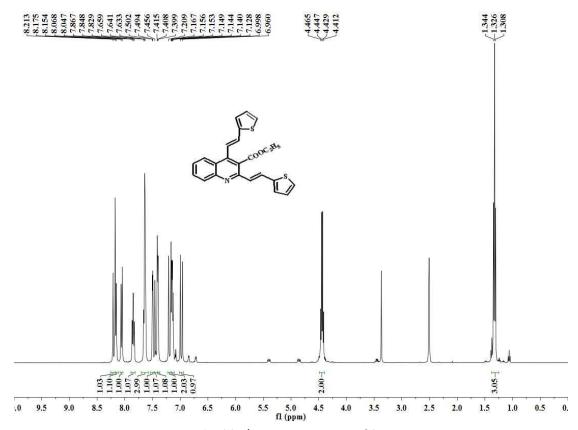


Fig. S37 1 H NMR spectrum of 3r

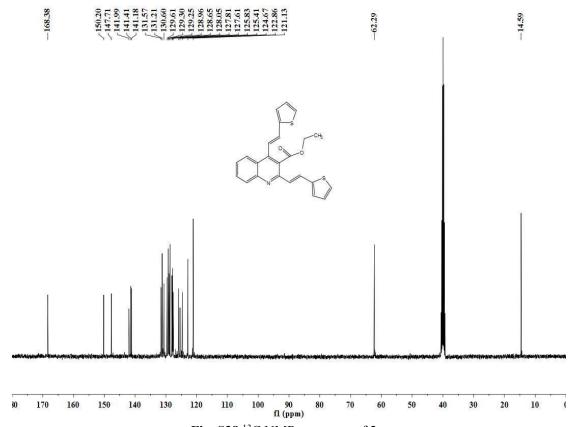


Fig. S38 13 C NMR spectrum of 3r

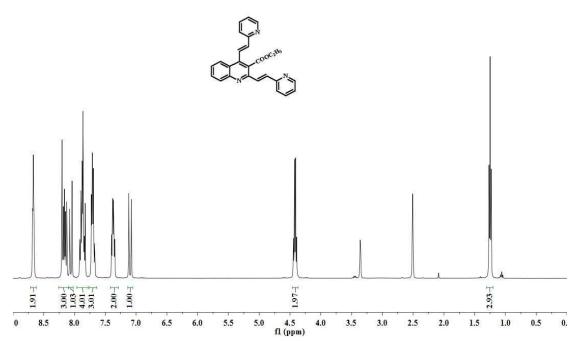


Fig. S39 ¹H NMR spectrum of 3s

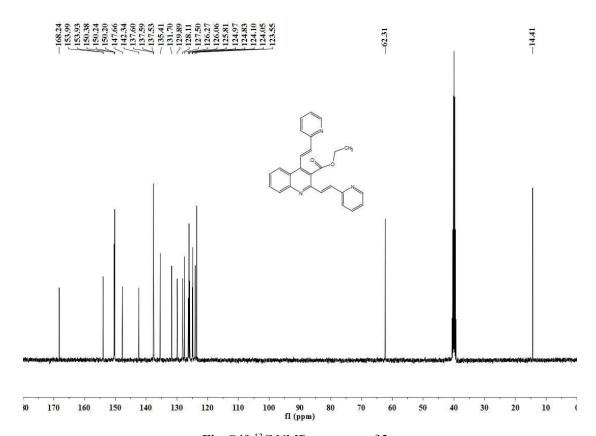


Fig. S40 13 C NMR spectrum of 3s

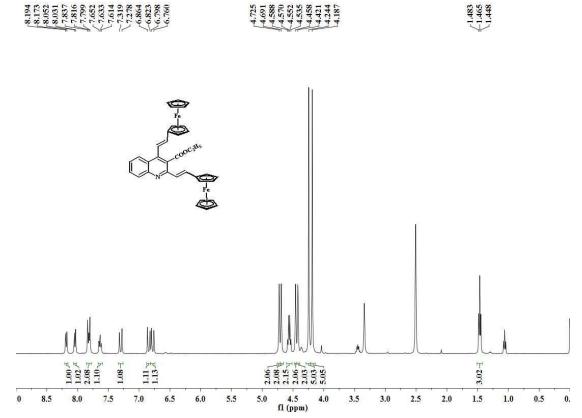


Fig. S41 ¹H NMR spectrum of 3t

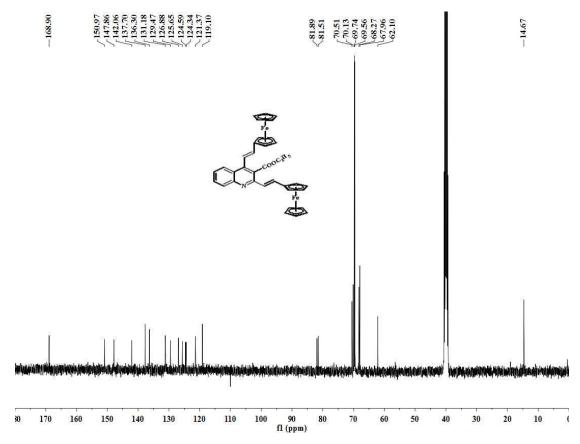


Fig. S42 ¹³C NMR spectrum of 3t