Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Mn substituted $Mn_xZn_{1-x}Co_2O_4$ oxides synthesized by co-precipitation; effect of doping on the structural, electronic and magnetic properties

Tarekegn Heliso Dolla^a, David G. Billing^b, Charles Sheppard^c, Aletta Prinsloo^c, Emanuela Carleschi^d, Bryan P. Doyle^d, Karin Pruessner^e, Patrick Ndungu^{a*}

^a Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, South Africa

^bDST-NRF Centre of Excellence in Strong Materials and Molecular Sciences Institute, School of

Chemistry, University of the Witwatersrand, Johannesburg, South Africa

^cChromium Research Group, Department of Physics, University of Johannesburg, Auckland Park, South Africa

^dDepartment of Physics, University of Johannesburg, Auckland Park, South Africa

eSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa

*Corresponding author. E-mail address: pndungu@uj.ac.za (P. Ndungu)

Supporting information

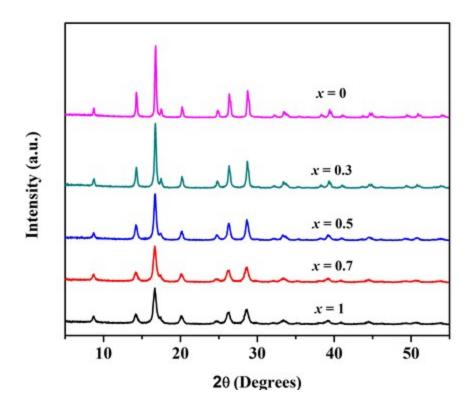
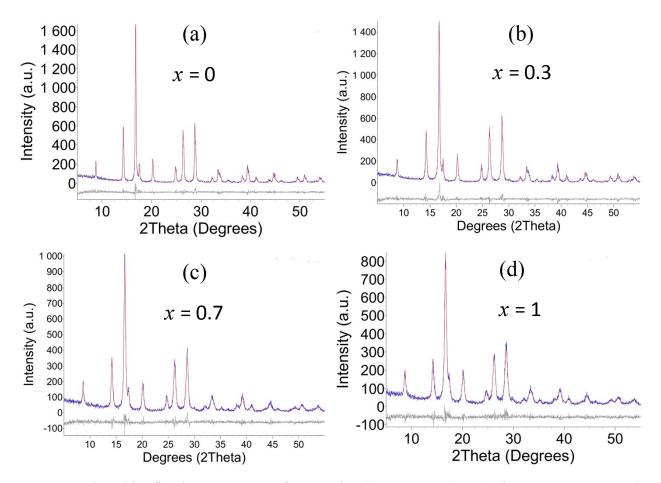



Fig. S-1: XRD pattern of $Mn_xZn_{1-x}Co_2O_4$ measured using a D9 diffractometer (XRD; Mo K α 1 radiation, $\lambda = 0.709321$ Å).

Fig. S-2: Rietveld refined XRD patterns for samples (a) $ZnCo_2O_4$ (x = 0), (b) $Mn_{0.3}Zn_{0.7}Co_2O_4$ (x = 0.3), (c) $Mn_{0.7}Zn_{0.3}Co_2O_4$ (x = 0.7), and (d) $MnCo_2O_4$ (x = 1)