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Two-step kinetic model development processes

(1) Conceptual model

According to the “adsorption-reduction” mechanism of Cr(VI) retention by the 

black soil, a corresponding conceptual model was established, and the Cr(VI) 

retention processes can be divided into two steps: (1) Cr(VI) is adsorbed onto the 

surface of black soil particle by electrostatic attraction force; (2) the adsorbed Cr(VI) 

is sequentially reduced into Cr(III) by electron donors on soil particles, such as soil 

organic matters.

(2) Mathematical model

First step:

Cr(VI) adsorption from liquid phase onto solid phase, is mainly governed by the 

concentration difference between bulk solution and solid phase, which can be 

described by classical Fick first diffusion law.

Eq. S1

𝑑𝐶𝑡
𝑑𝑡

= ‒ 𝑘1(𝐶𝑡 ‒ 𝐶𝑒)

where, Ct and Ce respectively represent real-time and equilibrium Cr(VI) 

concentration in bulk solution. k1 is the adsorption rate constant.

In traditional adsorption models, the concentration distribution ratio of Cr(VI) in 

the liquid and solid phase can be expressed as distribution coefficient Kd, which is the 

function of temperature. As in this two-step kinetic model the adsorbed Cr(VI) can be 

further reduced, the Ce is no longer a constant, which turns to be a function of Cr(VI) 

concentration on solid phase. The function is shown as follow.

Eq. S2
𝐶𝑒=

𝑞𝑠
𝐾𝑑

where, qs represents Cr(VI) concentration in diffuse layer. Based on Eq. S2, the Eq. 

S1 can be corrected as follow.

Eq. S3

𝑑𝐶𝑡
𝑑𝑡

= ‒ 𝑘1(𝐶𝑡 ‒ 𝑞𝑠𝐾𝑑)
Second step:

In this step, the adsorbed Cr(VI) is reduced into Cr(III), which is a typical 
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chemical reaction process between Cr(VI) and electron donors on soil particles, and 

this reaction can be described by classical first-order kinetic model. Additionally, 

considering that the adsorption of Cr(VI) from bulk solution acts as a source of 

adsorbed Cr(VI), the reaction can be expressed as the following form.

Eq. S4

𝑑𝑞𝑠
𝑑𝑡

= ‒ 𝑘2𝑞𝑠+
𝑉
𝑚
𝑘1(𝐶𝑡 ‒ 𝑞𝑠𝐾𝑑)

where, k2 represents the reduction rate constant. The Ct and qs represent Cr(VI) 

concentration in liquid and solid phase respectively, so they have different units, and 

thus a unit conversion is needed. V represents the volume of bulk solution, and m is 

the mass of the soil sample.

According to the conceptual model, Cr(VI) reduction on soil particle is the single 

source of the reduced Cr(III), and thus the reduced Cr(III) can be expressed as the 

following equation.

Eq. S5

𝑑𝑞𝑟𝑒
𝑑𝑡

= 𝑘2𝑞𝑠
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Fig. S1 The ZPC determination curve according to the method described elsewhere 

(Lu et. al., 2006). 



4

Fig. S2 The pH variation with time under different initial Cr(VI) concentrations under 

pH 5.7.
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Fig. S3 The TOC concentration variation in solution with time under different initial 

Cr(VI) concentrations under pH 5.7.
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Fig. S4 The correlation between Cr(III) concentration in solution and TOC 

concentration in solution under different initial Cr(VI) concentrations.
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Fig. S5 The pH variation in solution with time under different initial pH conditions 

under initial Cr(VI) concentration of 250 mg/l.
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Fig. S6 The TOC concentration variation in solution with time under different initial 

pH conditions under initial Cr(VI) concentration of 250 mg/l.
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Fig. S7 The correlation between Cr(III) concentration in solution and TOC 

concentration in solution under different initial pH conditions.
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Table S1 The fitting parameters of kinetic data under different initial Cr(VI) 

concentrations by linear and Freundlich isotherm models.

Linear isotherm model Freundlich isotherm model

qs=Kd·Ct+q0 qs=KF·Ct
1/n

Kd (L/g) q0 (mg/g) R2 KF n R2

0.0017 0.0270 0.9842 0.0067 1.3308 0.9919
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Table S2 The fitting parameters of kinetic data under different initial pH conditions 

by linear and Freundlich models.

Linear isotherm model Freundlich isotherm model

qs=Kd·Ct+q0 qs=KF·Ct
1/nInitial pH

Kd (L/g) q0 (mg/g) R2 KF n R2

3.5 0.0068 0.2327 0.9078 0.2108 6.4719 0.9535

5.7 0.0018 0.0274 0.9002 0.0067 1.3308 0.9919

7.0 0.0010 -0.0289 0.8550 0.0004 0.8540 0.8523
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Fig. S8 The XRD pattern of the black soil sample used in this experiment.
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Fig. S9 The correlation between adsorbed Cr(VI) content on soil particles and Cr(VI) 

reduction rate in the system under different initial Cr(VI) concentrations of 40, 100, 

250 and 400 mg/l under pH 5.7. The adsorbed Cr(VI) content was determined by the 

average value of the adsorbed Cr(VI) contents ranging from 5 to 120 d. The 

horizontal error bar was the standard deviation of the adsorbed Cr(VI) contents. The 

Cr(VI) reduction rate was determined by the slope of linear fitting result of Cr(III) 

content variation in the system ranging from 5 to 120 d. The vertical error bar was the 

uncertainty of the linear fitting.
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Fig. S10 The correlation between adsorbed Cr(VI) content on soil particles and Cr(VI) 

reduction rate in the system under different pH conditions of 3.5, 5.7 and 7.0under 

initial Cr(VI) concentration of 250 mg/l. The adsorbed Cr(VI) content under the pH 

5.7 and 7.0 was determined by the average value of the adsorbed Cr(VI) contents 

ranging from 5 to 120 d, and Cr(VI) content under the pH 3.5 was determined by the 

average value of the adsorbed Cr(VI) contents ranging from 5 to 30 d. The horizontal 

error bar was the standard deviation of the adsorbed Cr(VI) contents. The Cr(VI) 

reduction rate was determined by the slope of linear fitting result of Cr(III) content 

variation in the system ranging from 5 to 120 d. The vertical error bar was the 

uncertainty of the linear fitting.
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Fig. S11 The Cr(VI) anion species variation with pH from 1 to 13. The result was 

simulated by the Visual Minteq 3.1 software. The initial concentration of Cr(VI) was 

set as 250 mg/l, and the temperature was set as 25 °C.
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Fig. S12 The time evolution of Cr(VI) concentration in solution, adsorbed Cr(VI) 

content and reduced Cr(III) content under different initial Cr(VI) concentration and 

pH conditions. The curves are the fitting results of the first and second order kinetic 

models. (a-d) represent the fitting results of initial Cr(VI) concentration ranging from 

40 to 400 mg/l under pH 5.7. (e) and (f) represent the fitting results of initial pH 3.5 

and 7.0 under initial Cr(VI) concentration of 250 mg/l.
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Table S3 Optimized parameters of the first and second order kinetic models for the remaining Cr(VI) concentration in solution and reduced 

Cr(III) content in the reaction system under different initial Cr(VI) concentrations and pH conditions.

First order kinetic model Second order kinetic model

Cr(VI) in solution Reduced Cr(III) Cr(VI) in solution Reduced Cr(III)Condition Cr(VI) concentration (mg/l) pH

k R2 k R2 k R2 k R2

a 40 5.7 0.07674 0.9343 0.00392 0.9842 0.03864 0.8923 0.00225 0.939

b 100 5.7 0.0147 0.7329 0.0083 0.686 0.0003 0.9063 0.0002 0.8654

c 250 5.7 0.0055 0.4588 0.0034 0.6973 0.00004 0.6822 0.00002 0.8046

d 400 5.7 0.0041 0.3432 0.0023 0.7196 0.00002 0.5544 0.00001 0.7921

e 250 3.5 0.1199 0.9144 0.0326 0.6519 0.0009 0.9791 0.0002 0.9095

f 250 7.0 0.0026 0.0511 0.00129 0.7047 0.00001 0.02662 0.00001 0.7487
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Fig. S13 The linear fitting of the reduced Cr(III) content variation with time under 

different initial Cr(VI) concentration.
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Fig. S14 The linear fitting of reduced Cr(III) content variation with time under 

different initial pH conditions.
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Fig. S15 The FTIR spectra of HA samples extracted from the soil samples after 

reacting with Cr(VI) under different (a) initial Cr(VI) concentration and (b) pH 

conditions for 240 d. The blank represent the blank control group, where the soil 

samples were shaken in the solution without Cr(VI) under the same experimental 

condition for 240 d.
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Fig. S16 The absorbance band intensity ratio of hydroxyl (1031 cm-1), phenol (1230 

cm-1), carbonyl (1639 cm-1) and carboxyl (1712 cm-1) to methyl (1384 cm-1) of HA 

samples extracted from the soil samples reacted with Cr(VI) under different initial 

Cr(VI) concentrations for 240 d.
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Fig. S17 The absorbance band intensity ratio of hydroxyl (1031 cm-1), phenol (1230 

cm-1), carbonyl (1639 cm-1) and carboxyl (1712 cm-1) to methyl (1384 cm-1) of HA 

samples extracted from the soil samples reacted with Cr(VI) under different pH 

conditions for 240 d.


