Supporting Information

A Targeted Biocompatible Organic Nanoprobe for Photoacoustic and Near-Infrared-II Fluorescence Imaging in Living Mice

Xinhui Xie^{1*}, Yili Hu¹, Chao Zhang², Jialei Song¹, Suyang Zhuang¹, and Yuntao Wang¹

¹The Department of Orthopedics, Zhong Da hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.

²Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.

*The author is corresponding author. Email: <u>xiexinghuixxh@163.com.</u>

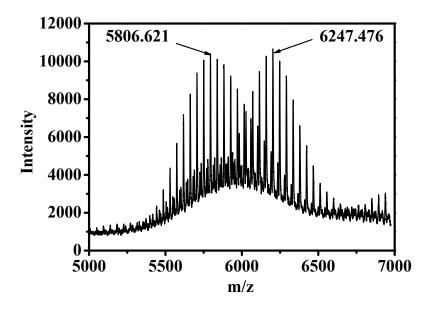


Figure S1. MALDI-TOF spectrum of IR-PEG-FA.

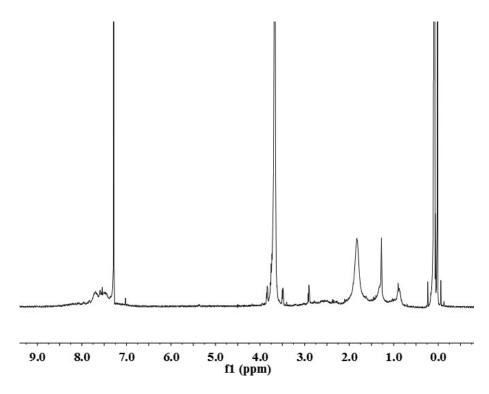


Figure S2. ¹H-NMR spectrum of IR-PEG.

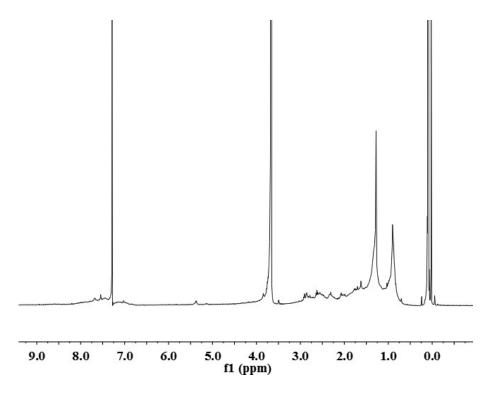
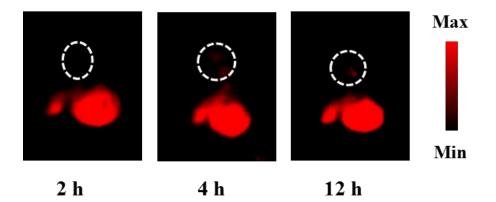



Figure S3. ¹H-NMR spectrum of IR-PEG-FA.

Figure S4. In vivo NIR-II imaging of tumor mice at series of time points after tail intravenous injection with **IR-PEG**. As shown in these images, a weak fluorescence signal was observed in the tumor sites after tail vein injection with **IR-PEG** mainly owing to the enhanced permeation and retention (EPR) effect. While the tumor area showed a bright and strong NIR-II fluorescence signal after systemic injection with **IR-PEG-FA** (**Figure 4D**) which indicated the targeted contrast agent

(**IR-PEG-FA**) possesses more tumor-specific targeting performance owing to the both active and passive tumor targeting.