Electronic Supplementary Information

Detection of nucleic acids via G-quadruplex-controlled L-cysteine oxidation and catalyzed hairpin assemblyassisted signal amplification

Piaopiao Chen,^a Pingyue Hu,^b Ke Huang,^b Erica Sawyer,^a Ke Sun,^a Binwu Ying,^a Xiawei Wei,^a Jia Geng^{*a}

^a Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China

^b College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China

*Corresponding author. E-mail: geng.jia@scu.edu.cn

Fig. S1 Optimization of _L-cysteine-modulated synthesis of CdTe QDs conditions. (A) and (B): reaction temperature; (C) and (D): reaction time. Error bars were estimated from three replicate measurements.

Fig. S2 Optimization of concentration of $_{L}$ -cysteine ($_{L}$ -Cys) for CdTe QDs synthesis. Error bars were estimated from three replicate measurements.

Fig. S3 Optimization of concentration of NaBH₄ for CdTe QDs synthesis. Error bars were estimated from three replicate measurements.

Fig. S4 Optimization of concentration of H1 and H2 for catalyzed hairpin assemblyassisted signal amplification reaction. Error bars were estimated from three replicate measurements.

Fig. S5 Optimization of time of catalyzed hairpin assembly-assisted signal amplification reaction. Error bars were estimated from three replicate measurements.

Fig. S6 Optimization of concentration of K⁺ for form the G-quadruplex structure. Error bars were estimated from three replicate measurements.

Fig. S7 Optimization of concentration of hemin for form the G-quadruplex-hemin complex. Error bars were estimated from three replicate measurements.

Fig. S8 Optimization of time of form the G-quadruplex-hemin complex. Error bars were estimated from three replicate measurements.

Fig. S9 Optimization of time of oxidation L-cysteine to cystine by the G-quadruplexhemin-K⁺ complex. Error bars were estimated from three replicate measurements.

Method	System	LOD; Linear range	Reference
Fluorescence	Molecular beacon; exonuclease and polymerase	28.2 fM; 50 fM-1 nM	1
Fluorescence	G-quadruplex-NMM; Exonuclease III	36 pM; 0.6-3 nM	2
Fluorescence	G-quadruplex-NMM; DNA walker	4.1 fM; 0.02-500 pM	3
Fluorescence	Molecular beacons; strand displacement reaction	10 pM; 10-1000 pM	4
FRET ^a	Catalyzed hairpin assembly (CHA)	33 pM; 0-4 nM	5
Colorimetric	G-quadruplex-ABTS; polymerase and	10 pM; 10 pM-200 nM	6
	nicking endonuclease		
EC ^b	Strand displacement amplification and hybridization chain reaction	0.16 fM; 0.2 fM-1 pM	7
ECL ^c	Restriction enzyme-powered DNA walking machine	0.19 pM; 0.5 pM-10 nM	8
SERS ^d	Exonuclease III	1 fM; 1 fM-10 nM	9
CL ^e	Enzyme-free DNA walker	3.9 pM; 0.05-1 nM	10
ICP-MS ^f	Rolling circle amplification; Au NPs	0.1 fM; 1-20 fM	11
ICP-MS	Hybridization chain reaction; Cu NPs	4 pM; 20-1000 pM	12
Fluorescence	CdTe QDs; catalyzed hairpin assembly	0.12 pM; 0.1 pM-1 nM	This work

Table S1 Comparison of different strategies for the detection of nucleic acids

^aDonor donor-acceptor fluorescence resonance energy transfer, ^bElectrochemical, ^cElectrochemiluminescence, ^dSurface-enhanced Raman spectroscopy, ^eChemiluminescence,

fInductively coupled plasma mass spectrometer.

References

- 1 S. F. Liu, H. W. Gong, X. Y. Sun, T. Liu and L. Wang, Chem. Commun., 2015, **51**, 17756-17759.
- 2 C. Q. Zhao, L. Wu, J. S. Ren and X. G. Qu, Chem. Commun., 2011, 47, 5461-5463.
- 3 W. Li, L. Wang and W. Jiang, Chem. Commun., 2017, 53, 5527-5530.
- 4 J. H. Huang, X. F. Su and Z. G. Li, Anal. Chem., 2012, 84, 5939-5943.
- 5 H. M. Fang, N. L. Xie, M. Ou, J. Huang, W. S. Li, Q. Wang, J. B. Liu, X. H. Yang and K. M. Wang, *Anal. Chem.*, 2018, **90**, 7164-7170.
- 6 Z. F. Shen, F. Li, Y. F. Jiang, C. Chen, H. Xu, C. C. Li, Z. Yang and Z. S. Wu, Anal. Chem., 2018, 90, 3335-3340.
- 7 Z. Q. Chen, Y. Liu, C. Xin, J. K. Zhao and S. F. Liu, Biosens. Bioelectron., 2018, 113, 1-8.
- 8 Y. Chen, Y. Xiang, R. Yuan and Y. Q. Chai, Nanoscale., 2015, 7, 981-986.
- 9 Y. D. Sun, P. Peng, R. Y. Guo, H. H. Wang and T. Li, Biosens. Bioelectron., 2018, 104, 32-38.
- 10 N. X. Li, J. Zheng, C. R. Li, X. X. Wang, X. H. Ji and Z. K. He, *Chem. Commun.*, 2017, **53**, 8486-8488.
- 11 Y. He, D. L. Chen, M. X. Li, L. Fang, W. J. Yang, L. J. Xu and F. F. Fu, *Biosens. Bioelectron.*, 2014, **58**, 209-213.
- 12 R. Liu, C. Q. Wang, Y. M. Xu, J. Y. Hu, D. Y. Deng and Y. Lv, *Anal. Chem.*, 2017, **89**, 13269-13274.