Supporting information

Alkyl coupling in tertiary amines as analog of Guerbet condensation reaction

Yage Zhou^{1,2}, Dan Wu², Willinton Yesid Hernández², Changru Ma², Huangyang Su^{1,2}, Vitaly Ordomsky^{2*}

¹State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China

² Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 201108 Shanghai, People's Republic of China

METHODS

Metal supported catalysts Pd/Al₂O₃, Pd/C, Pt/C, Ru/C, Pt/Al₂O₃, Rh/Al₂O₃ containing 5 wt. % of the metal have been purchased from Johnson Matthey. Ni/Al₂O₃ containing 5 wt.% of Ni has been prepared by impregnation of corresponding amount of Ni(NO₃)·6H₂O with subsequent calcination at 450 °C and reduction at 550 °C with subsequent transfer of the catalyst into reactor in inert atmosphere.

The catalytic tests have been conducted in 50 ml batch reactors. The catalysts have been loaded in the reactor (0.1 g) and reduced in the reactor before catalytic tests at 200 °C during 1 h. Afterwards, the reactor has been charged with 2 g of tertiary amine, pressurized by 5 bar of N_2 or H_2 with subsequent heating to the target temperature for 5-17 h. In some experiment 5 g of cyclohexane has been added as a solvent. The reaction products have been analyzed by GC, GC-MS and ¹H and ¹³C NMR.

The TEM observations of the samples were performed on a FEI Tecnai F30 electron microscope, operating at 300 kV. CO or O₂ chemisorption measurements were carried out with a Micromeritics ASAP 2020 instrument to evaluate the metal dispersion. Before each measurement, the sample was reduced at 200 °C. After the reduction, the sample was cool down to 45 °C with subsequent pulse adsorption of the gas. FTIR measurements were carried out on a Nicolet Protege 380 spectrometer. About 20 mg of the sample was pressed in self-supported wafer. The sample has been activated at 200 °C under hydrogen atmosphere with subsequent vacuuming and cooled down to r.t. 10 torr of TEA has been adsorbed over the catalyst with subsequent gradually heating till 200 °C. CO adsorption has been performed by addition of 10 torr of CO at room temperature with subsequent deep vacuuming.

Catalysts	Metal		Particle			
	content,	Gas	Metal surface	Dispersion,	Particle	size, nm*
	wt. %	adsorption	area, m²/g	%	size, nm	
Pd/Al ₂ O ₃	4.5	CO	109	24	5	3
Pt/C	4.9	O ₂	120	24	4.6	-
Ru/Al ₂ O ₃	4.7	со	72	16	6.7	-
Ru/C	5.0	СО	199	42	2.4	2.5
Pd/C	5.3	СО	54	12	8.1	-
Rh/Al ₂ O ₃	4.9	-	-	-	-	-
Pd black	100	СО	26	6	20	-
Ni/Al ₂ O ₃	5.1	со	83	12	8.1	-

 Table S1. Metal dispersion of the catalysts

*- analysis by TEM

Table S2. TEA transformation (2 g TEA, $p(N_2)=5$ bar, 0.1 g catalyst, 5h, 200 °C)

Catalysts	Conver	Selectivity to amines, mol. %							
	sion, %	Coupling				Dealkylation			
		1S	1S 2S 3S		Ethyl group	4S	5S	6S	Ethyl
					accepted				group
									lost
-	1	-	-	-		-	-	-	
Pd/C	89	20	13	3	52	26	11	17	48
Pt/C	62	27	5	3	43	44	12	8	68
Pd/Al ₂ O ₃	47	41	5	1	53	42	9	2	60
Pd/Al ₂ O ₃ ^a	27	39	2	-	43	42	11	-	64
Ru/Al ₂ O ₃	3	48	-	-	48	49	-	-	49
Ru/C	13	38	1	4	48	55	2	2	59
Rh/Al ₂ O ₃	2	-	-	-	0	-	-	-	0
Pd/Al ₂ O ₃ ^b	4	43	-	-	43	53	-	2	53
Pd/Al ₂ O ₃ c	88	14	7	4	36	30	26	11	82

^[a] H₂ gas phase, ^[b] 150 °C, ^[c] 250 °C

Table S3. TPA transformation (2 g TPA, $p(N_2)=5$ bar, 0.1 g catalyst, 5h)

Catalysts	Temperat	Conve	Selectivity to amines, mol. %								
	ure, °C	rsion,	Coupling				Dealkylation				
		%	7S	8S	9S	9S Propyl		11S	12S	13S	Propyl
						group					group
						accepted					lost
Pd/Al ₂ O ₃	200	9	44	-	-	44	54	-	-	-	54
Pd/Al ₂ O ₃	250	69	29	1	1	32	63	5	1	1	78

Table S4. N-ethylpiperidine transformation (2 g N-ethylpiperidine, p(N₂)=5 bar, 0.1 g catalyst, 5h)

Catalysts	Temperat	Conve	Selectivity to amines, mol. %							
	ure, °C	rsion,	Coupling					Dealkylation		
		%	14S 15S 16S 17S Ethyl		18S	Ethyl				
							group		group	
							accepted		lost	
Pd/Al ₂ O ₃	200	36	21	6	4	2	45	58	58	

Time, min

Figure S1. GC-MS analysis after 5h during TEA transformation (2 g TEA, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C) with assignment of the products a,b,c,d,e,f in the Figure S2

Figure S2-a. MS spectrum of the product a from Figure S1 in comparison with assignment in NIST library to diethylamine

Figure S2-b. MS spectrum of the product b from Figure S1 in comparison with assignment in NIST library to butylethylamine

Figure S2-c. MS spectrum of the product c from Figure S1 in comparison with assignment in NIST library to butyldiethylamine

Figure S2-d. MS spectrum of the product *d* from *Figure S1* in comparison with assignment in NIST library to dibutylethylamine

Figure S2-e. MS spectrum of the product e from Figure S1 in comparison with assignment in NIST library to hexyldiethylamine

Figure S2-f. MS spectrum of the product *f* from *Figure S1* indicating on formation of intermediate diamine product

Figure S3. ¹³*C NMR* analysis after different reaction time during TEA transformation (2 g TEA, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C)

Figure S4. ¹*H* NMR analysis after different reaction time during TEA transformation (2 g TEA, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C)

Figure S5. ¹*H* NMR analysis after 5*h* during TEA transformation (2 g TEA, $p(N_2)=5$ bar, 0.1 g Pd/Al_2O_3 , 200 °C)

Figure S6. TEM images of Pd/Al₂O₃

Figure S7. TEM images of Ru/C

Figure S8. GC-MS analysis after 5h during TPA transformation (2 g TPA, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C) with assignment of the products a,b in the Figure S9

Figure S9-a. MS spectrum of the product a from Figure S8 in comparison with assignment in NIST library to dipropylamine

Figure S9-b. MS spectrum of the product b from Figure S8 indicating on formation of 2-methy-N,N-dipropylpentane-1-amine

Figure S10. ¹*H* NMR analysis after 5 h during TPA transformation (2 g TPA, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C)

Figure S11. ¹³C NMR analysis after 5 h during TPA transformation (2 g TPA, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C)

Figure S12. GC-MS analysis after 5h during *N*-ethylpiperidine transformation (2 g *N*-ethylpiperidine, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C) with assignment of the products a,b,c in the Figure S13

Figure S13-a. MS spectrum of the product a from Figure S12 in comparison with assignment in NIST library to N-butylpiperidine

Figure S13-b. MS spectrum of the product b from Figure S12 indicating on formation of N-hexylpiperidine

Figure S13-c. MS spectrum of the product b from Figure S12 indicating on formation of N-octylpiperidine

Figure S14. GC-MS analysis after 5h during N,N-diethylaniline transformation (2 g N,N-diethylaniline, $p(N_2)=5$ bar, 0.1 g Pd/Al₂O₃, 200 °C) with assignment of the products a,b,c,d,e,f,g in the Figure S15

Figure S15-a. MS spectrum of the product a from Figure S14 in comparison with assignment in NIST library to N-ethylaniline

Figure S15-b. MS spectrum of the product b from Figure S14 in comparison with assignment in NIST library to N-butylaniline

Figure S15-c. MS spectrum of the product c from Figure S14 in comparison with assignment in NIST library to N-ethylbutylaniline

Figure S15-d. MS spectrum of the product c from Figure S14 in comparison with assignment in NIST library to N-hexylaniline

Figure S15-e. MS spectrum of the product c from Figure S14 in comparison with assignment in NIST library to N,N-dibutylaniline

Figure S15-f. MS spectrum of the product *f* from *Figure S14* indicating on formation of N,N-ethylhexylaniline

Figure S15-g. MS spectrum of the product g from Figure S14 indicating on formation of N,N-diethyl-*N,N-diphenylbutane-1,3-diamine*