Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Nephelauxetic effect of hydride ligand in Sr_2LiSiO_4H as a host

material for rare-earth-activated phosphors

Tong Wu,^a Asako Ishikawa,^a Takashi Honda,^b Hiromu Tamatsukuri,^b Kazutaka Ikeda,^b Toshiya Otomo^b and Satoru Matsuishi*^a

^aMaterials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

^bInstitute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

*Corresponding author. E-mail address: matsuishi@mces.titech.ac.jp

Materials

All non-doped and Eu²⁺-doped (2%) samples were directly synthesized by high-temperature reaction of $Sr_{2-x}Eu_xSiO_4$ (x = 0, 0.04) with LiX (X = H, F). Specifically, to prepare the non-doped samples, SrCO₃ (99.9%, Kojundo Chemical Laboratory co., ltd, Japan) and SiO₂ (99.9%, Kojundo Chemical Laboratory co., ltd, Japan) were thoroughly mixed in alumina mortar in air at a stoichiometric ratio of 2:1. The mixture was then heated in an alumina boat in a tube furnace with N₂ gas flow at 1300 °C for 6 h to obtain the precursor Sr_2SiO_4 . LiH was synthesized by heating Li metal with H₂ gas in a stainless steel vessel. To prepare Sr_2LiSiO_4H , Sr_2SiO_4 was thoroughly mixed with LiH (1:1.05) in an Ar-filled glove box and pressed into pellet. The pellet was then placed in a vessel and heated at 700 °C for 5 h under 0.9 MPa H₂ pressure. To prepare Sr_2LiSiO_4F , the precursor was mixed with LiF (99.9%, Kojundo, Japan) at a mole ratio of 1:1.05 in ambient environment and pressed into pellet. The pellet was sintered at 900 °C for 12 h under N₂ gas flow.

To prepare the Eu-doped samples, the same procedure was used except that the precursor contained Eu. Specifically, SrCO₃ (99.9%, Kojundo Chemical Laboratory co., ltd, Japan), Eu₂O₃(99.9%, Kojundo Chemical Laboratory co., ltd, Japan), and SiO₂(99.9%, Kojundo Chemical Laboratory co., ltd, Japan) were thoroughly mixed in alumina mortar in air at a stoichiometric ratio of 1.96:0.04:1. The mixture was then sintered in an alumina boat placed inside a tube furnace at 1200 °C for 6 h under N₂/H₂ = 95: 5 gas flow to obtain the precursor with divalent Eu.

For the neutron diffraction measurement, the deuterated and ⁷Li-enriched sample $Sr_2^7LiSiO_4D$ was synthesized using D₂ gas (4N) and 99.9% ⁷Li-enriched Li metal ingot.

Thermal desorption spectroscopy (TDS)

To determine the hydrogen content, TDS was performed (TDS, TDS1400, ESCO, Japan) under vacuum ($<10^{-7}$ Pa). The temperature was increased from room temperature to 1476 K at a heating rate of 60 K/min.

Powder x-ray diffraction (XRD)

XRD patterns of the samples were recorded on a D8 Advance diffractometer (Bruker, Germany) with Cu Kα radiation at room temperature.

Figure S1. XRD patterns of (a)Sr₂LiSiO₄H:Eu²⁺ (impurity phase: 1.36 wt.% Li₂SrSiO₄, GOF = 1.32, $R_{wp} = 5.60$). (b) Sr₂LiSiO₄F:Eu²⁺ (impurity phase: 5.16 wt.% Sr₂SiO₄, GOF = 1.84, $R_{wp} = 9.32$)

Optical property measurement

Diffuse reflectance spectra of the samples were measured in ambient atmosphere on a U4100 (Hitachi High-Technologies Corp., Japan) spectrophotometer equipped with an integrating sphere and Spectralon SRS-99-010 as a reflection standard. The powder sample was contained in the sample holder with SiO₂ glass window. The photoluminescence spectra of the samples were measured at room temperature on a F-4500 (Hitachi High-Technologies Corp., Japan) fluorescence spectrophotometer.

Figure S2. Diffuse reflectance spectra of Sr_2LiSiO_4F and Sr_2LiSiO_4H . The $(F(R)\cdot hv)^{1/2}$ data of Sr_2LiSiO_4F were multiplied by 10 so that both sets of data are displayed within the same coordinate axis range.

Magnetization measurement

To determine Eu valence state in Sr₂LiSiO₄H:Eu²⁺ and Sr₂LiSiO₄F:Eu²⁺, magnetization measurements were performed by using a SQUID vibrating sample magnetometer (Quantum Design MPMS). The Magnetization (*M*) versus Magnetic field (*H*) plots were obtained from -70000 Oe to 70000 Oe under the fixed temperature T = 2.5 K. The *M* versus Temperature (*T*) plots were obtained from 2.5 K to 300 K with fixed magnetic field H = 1 T. Both *M*-*H* curve and *M*-*T* curve were well-fitted by the equation; $M = NgJ\mu_BB_I(x)$

where *N* is the number of atoms, $B_{j}(x)$ is Brillouin function ¹;

$$B_{J}(x) = \frac{2J+1}{2J} \operatorname{coth} \left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \operatorname{coth} \left(\frac{1}{2J}x\right)$$

and *x* is given by $x = gJ\mu_B/k_BT$ with total angular momentum *J*, Landé *g*-factor g = 2, Bohr magneton $\mu_{B} = 9.274 \times 10^{-21}$ and Boltzmann constant $k_B = 1.38065 \times 10^{-16}$. We chose J = 7/2 which corresponds to Eu²⁺ with ${}^{8}S_{7/2}$ state. Based on the well-fitted curve, we evaluated the number of Eu²⁺ and compared with nominal concentration of Eu in the samples. For Sr₂LiSiO₄H:Eu²⁺, the *M*-*H* curve gave the number of Eu²⁺ corresponding to 95.2% of nominal Eu content while the *M*-*T* curve gave the value of 89.4%. For Sr₂LiSiO₄F:Eu²⁺, the values of 80.2% and 80.0% were also obtained from *M*-*H* and *M*-*T* curves, respectively. These results indicate the most of Eu atom form divalent states in both Sr₂LiSiO₄H:Eu²⁺ and Sr₂LiSiO₄F:Eu²⁺ sample.

Figure S3. *M*-*T* curve and *M*-*H* curve (insert) of (a) $Sr_2LiSiO_4H:Eu^{2+}$ and (b) $Sr_2LiSiO_4F:Eu^{2+}$ fitted by Brillouin function with J = 7/2.

Time-of-flight neutron powder diffraction (TOF-NPD)

The TOF-NPD data of the ⁷Li-enriched Sr_2LiSiO_4D sample were collected at room temperature in a vanadium–nickel alloy holder with a diameter of 6 mm. Rietveld refinement of the data was performed using the Z-Rietveld code.²

- · · · · · · · · · · · · · · · · · · ·		
R _{wp}		2.0935%
R _p		1.7904%
$R_{ m wp/}R$	ee ee	3.441258
Mass ratio (wt.%)	Sr ₂ LiSiO ₄ D	97.44(2)
	SrLi ₂ SiO ₄	2.12(2)
	SrO	0.44(1)
$R_{ m B}$	Sr ₂ LiSiO ₄ D	1.0152%
	SrLi ₂ SiO ₄	4.2738%
	SrO	1.9159%
$R_{ m F}$	Sr ₂ LiSiO ₄ D	1.0715%
	SrLi ₂ SiO ₄	1.4514%
	SrO	1.1176%

Table S1. Summary of the Rietveld refinement analysis of Sr₂LiSiO₄D

*R*_{wp}, 2.0935%; *R*_p, 1.7904%; *R*_e, 0.6084%; *R*_B,1.0152%; *R*_F, 1.0715%.

Phase 1: Sr₂LiSiO₄D

Crystal system: monoclinic

Space group: $P2_1/m$ (11)

Lattice parameters: a = 6.5820(5) Å, b = 5.4197(4) Å, c = 6.9475(5) Å, $\beta = 112.5628(2)$ °

Table S2. Atomic coordinates, occupancy and isotropic displacement parameters of Sr₂LiSiO₄D

	Occupancy	x	У	Ζ	$U_{\rm iso} (10^{-2}{\rm \AA}^2)$
Sr1 2e	1	0.16090(4)	1/4	0.37365(4)	0.936(9)
Sr2 2e	1	0.63362(5)	1/4	0.89818(4)	0.774(10)
Lil 2e	1.000(2)	0.15003(14)	1/4	0.87596(14)	1.116(35)
Sil 2e	1	0.65322(8)	1/4	0.33402(7)	0.547(12)
O1 2e	1	0.40260(6)	1/4	0.15666(6)	0.777(9)
O2 4f	1	0.22628(4)	-0.00820(4)	0.71201(4)	0.889(9)
O3 2e	1	0.65916(6)	1/4	0.56780(4)	1.624(12)
D1 2a	1.000(1)	0	0	0	1.987(14)

Table S3. Isotropic displacement parameters of Sr_2LiSiO_4D (×10⁻² Å²)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sr1	0.983(19)	1.222(20)	0.603(17)	0	0.530(15)	0
Sr2	1.015(20)	0.688(22)	0.619(21)	0	0.391(17)	0
Li1	0.913(61)	1.593(60)	0.841(57)	0	0.592(48)	0
Si1	0.772(30)	0.564(27)	0.306(27)	0	0.168(22)	0
01	0.205(24)	1.439(24)	0.685(20)	0	0.015(17)	0
02	1.251(19)	0.472(14)	0.944(16)	0.485(14)	0.524(15)	-0.008(12)
03	2.684(24)	1.783(23)	0.405(21)	0	0.973(19)	0
D1	1.687(26)	1.907(25)	2.366(24)	0.035(16)	0.751(20)	0.071(19)

Phase 2: SrLi₂SiO₄ Crystal system: Trigonal Space group: $P3_12_1(152)$ Lattice parameters: a = 5.0238(35) Å, c = 12.4580(12) Å

Table S4. Atomic coordinates, occupancy and isotropic displacement parameters of SrLi₂SiO₄

	x	У	Ζ	$U_{\rm iso}(\times 10^{-2}{\rm \AA}^2)$
Sr1 6c	0.4118(9)	0	1/3	0.633
Lil 3a	0.0955(22)	0.3909(32)	0.4136(12)	0.633
Si1 3b	0.2997(16)	0	5/6	0.633
O1 6c	0.0386(9)	0.4940(11)	0.0566(3)	0.633
O2 6c	0.2968(8)	0.2396(8)	0.1691(4)	0.633

Phase 3: SrO

Crystal system: Cubic

Space group: Fm-3m (225)

Lattice parameter: a = 5.1565(45) Å

Table S5. Atomic coordinates,	occupancy and	l isotropic o	displacement	parameters	of SrO
-------------------------------	---------------	---------------	--------------	------------	--------

		x	у	Z	U _{iso} (×10 ⁻² Å ²)
Sr1	4a	0	0	0	0.633
01	4b	1/2	1/2	1/2	0.633

	Sr ₂ LiS	biO ₄ F	Sr ₂ LiSiO ₄ D		
Lattice parameters	a = 6.5825(9) Å, $b = 5.4158(8)$ Å, $c = 6.9266(6)$ Å, $\beta = 112.525(8)^{0}$		a = 6.5868(2) Å, b c = 6.9498(2) Å, þ	b = 5.4219(1) Å, $B = 112.556(2)^{0}$	
	Sr1-O1	2.578(9) Å	Sr1-O1	2.578(5) Å	
	Sr1-O2	2.708(6) Å	Sr1-O2	2.721(3) Å	
	Sr1-O3	2.911(3) Å	Sr1-O3	2.9226(10) Å	
Interatomic	Sr1-F1	2.7401(7) Å	Sr1-D1	2.7544(3) Å	
distances	Sr2-O1	2.7341(9) Å	Sr2-O1	2.73416(15) Å	
	Sr2-O2	2.817(6) Å	Sr2-O2	2.8259(11) Å	
	Sr2-O3	2.347(8) Å	Sr2-O3	2.365(3) Å	
	Sr2-F1	2.613 (1) Å	Sr2-D1	2.6158(3) Å	

Table S6. Interatomic distances in Sr₂LiSiO₄F and Sr₂LiSiO₄D

The Sr_2LiSiO_4F data were obtained from the literature,³ whereas the Sr_2LiSiO_4D data were obtained from the TOF-NPD measurements.

DFT calculations

Single-shot G_0W_0 calculations with $3 \times 4 \times 3$ mesh and density functional theory calculations, using the projector-augmented wave method and a Perdew–Burke–Ernzerhof exchange correlation functional implemented in VASP code, were performed to determine the bandgap energies of the host materials. ^{4–7} To investigate the optical energy transitions from Eu 4f to 5d in Sr₂LiSiO₄H and Sr₂LiSiO₄F, constrained density functional theory (cDFT) calculations were performed with a planewave cutoff energy of 500 eV as wave function. The $2 \times 2 \times 1$ supercells (Sr₃₁Eu₁Li₁₆Si₁₆O₆₄H₁₆), which were derived from the calculated Eu-free system, contain 144 atoms with one Eu atom substituted on the Sr1 site and Sr2 site. The DFT+U method⁸ was used for localizing the Eu f electrons with U = 6 eV for both hydride and fluoride materials.

Sr ₂ LiSiO ₄ H				Sr ₂ LiSiO ₄ F			
Bond length (Å)		Bond an	Bond angle (Å)		Bond length (Å)		gle (Å)
Eu-O1	2.603	O1-Eu-H	62.995	Eu-O1	2.616	O1-Eu-F	62.774
			62.980				62.774
Eu-O2	2.716	O2-Eu-O2	58.296	Eu-O2	2.722	O2-Eu-O2	58.326
	2.724				2.722		
	2.639		64.198		2.619		64.894
	2.639				2.619		
Eu-O3	2.969	O3-Eu-O3	135.065	Eu-O3	2.950	O3-Eu-O3	135.894
	2.969				2.950		
	3.078	O3-Eu-H	112.111		3.077	O3-Eu-F	111.940
			112.113				111.940
Eu-H	2.765	H-Eu-H	58.994	Eu-F	2.810	F-Eu-F	58.427
	2.765				2.810		

Table S7. Bond lengths and bond angles of Eu coordination in Sr1 site in the A_0^* state (structure optimized for A_0 state)

In Sr1 substitution, Eu coordinates with one O1, four O2, three O3 atoms and two X(X = F, H) atoms.

Sr ₂ LiSiO ₄ H				Sr ₂ LiSiO ₄ F			
Bond ler	Bond length (Å)		Bond angle (Å)		Bond length (Å)		gle (Å)
Eu-O1	2.760	O1-Eu-O1	164.213	Eu-O1	2.759	O1-Eu-O1	164.294
	2.760				2.759		
	2.833	O1-Eu-H	120.636		2.787	O1-Eu-F	120.164
			120.654				120.164
Eu-O2	2.849	O2-Eu-O2	55.493	Eu-O2	2.857	O2-Eu-O2	55.406
	2.848				2.857		
	2.937		57.405		2.905		57.889
	2.935				2.905		
Eu-O3	2.362	O3-Eu-H	83.227	Eu-O3	2.360	O3-Eu-F	82.447
			83.222				82.447
Eu-H	2.574	H-Eu-H	63.615	Eu-F	2.634	F-Eu-F	62.592
	2.574				2.634		

Table S8. Bond lengths and bond angles of Eu coordination in Sr2 site in the A_0^* state (structure optimized for A_0 state)

In Sr2 substitution, Eu coordinates with three O1, four O2, one O3 atoms and two X(X = F, H) atoms.

Figure S3. Band structures showing the electronic states (ground state A_0 , excited state A_0^* , excited state after structure relaxation A*, ground state A) of (a) Sr_2LiSiO_4F and (b) Sr_2LiSiO_4H . (c) Configuration coordinate diagram. Band structures showing the A* states of (d) Sr_2LiSiO_4F (left) and Sr_2LiSiO_4H (right). For better comparison of the Eu 5d lowest band in each excited state, the Eu 4f energy level was set as 0 eV for both Sr_2LiSiO_4F and Sr_2LiSiO_4H .

References

- 1 C. Kittel, Introduction to Solid State Physics, 2004.
- 2 R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori and T. Kamiyama, *Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.*, 2009, 600, 94–96.
- 3 A. Akella and D. A. Keszler, *Chem. Mater.*, 1995, 7, 1299–1302.
- 4 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 5 G. Kresse and J. Furthmüller, *Phys. Rev. B Condens. Matter Mater. Phys.*, 1996, **54**, 11169–11186.
- 6 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 7 M. Van Schilfgaarde, T. Kotani and S. Faleev, *Phys. Rev. Lett.*, 2006, 96, 1–4.
- 8 L. A. I, J. Phys. Condens. Matter, 1997, 9, 767.