Supplementary Information

Fluorescent sensor constructed from nitrogen-doped carbon nanodots (N-CDs) for pH detection in synovial fluid and urea

determination

Min Chen,^{a,#} Wen Wu,^{a,#} Yuyuan Chen,^b Qingqing Pan,^b Yongzhong Chen,^c Zongfu Zheng,^c Yanjie Zheng,^b Liying Huang,^{b,*} and Shaohuang Weng^{b,*}

a. Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China

b. Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China

c. 476 Hospital of PLA, Fuzhou, 350002, China

*Corresponding author: shweng@fjmu.edu.cn (S. Weng), fjmuhly88@sina.com (L. Huang), Tel. (fax): +86 591 22862016.

[#]These authors contributed equally.

Figure S1. The fluorescence stability of N-CDs in different concentrations of

NaCl

Figure S2. High-resolution XPS survey of C1s (A) and O1s (B)

Figure S3. Relationship between the fluorescence intensities of pure CDs and pH values

Figure S4. Four cycle times of the reversible pH-response of the fluorescence response of N-CDs between the pH values of 5.0 and 9.0

Luminescent materials	Linear range	Real application	Ref.
N doped carbon quantum dots	рН5.0 – рН13.5	Not mentioned	1
N and B co-doped Carbon dots	рН4.4 – рН7.0	Not mentioned	2
N,S co-doped carbon quantum dots	pH5.5 – pH7.0	Not mentioned	3
N-doped carbon dots	pH2.0 – pH14.0	Real water samples	4
polymer-based nanoparticles	рН5.0 - рН8.0	Intracellular pH	5
		Measurements	
Carbon dots	pH5.2 – pH8.8	Intracellular pH	6
		Imaging	
Nitrogen doped carbon dots	рН3.0 – рН9.0	pH detection in	This
		synovial fluid	work

Table S1 Comparison in the analytical performance of pH detection through

luminescent materials

Table S2 Comparison in the analytical performance of urea detection through

Luminescent materials	Linear range	Limit of	Real	Ref.	
	(mM)	detection (mM)	applicatio		
			n		
Luminescent copper nanoclusters	0.25-5	0.01	serum	7	
Urease-Au clusters mixture	not mentioned	1	serum	8	
Graphene quantum dots	0.1-100	0.01	serum	9	
CdSe/ZnS quantum dots	0.01-120	0.01	Not	10	
			mentioned		
N-acetyl-L-cysteine-Au nanoclusters	0.055-0.55	0.055	urine	11	
Nitrogen doped carbon dots	0-10	0.072	serum	This	
				work	

luminescent materials

Reference

- 1. Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao and J. Chen, Chem. Eur. J., 2014, 20, 2254 2263
- 2. Y. Wang, L. Lu, H. Peng, J. Xu, F. Wang, R. Qi, A. Xu and W. Zhang, Chem. Commun., 2016, 52, 9247.
- 3. Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui and J. Liu, Carbon, 2016, 104, 169.
- 4. A. Barati, M. Shamsipu and H. Abdollahi, Anal. Chim. Acta, 2016, 931, 25.
- 5. Y. Chan, C. Wu, F. Ye, Y. Jin, P. Smith and D. Chiu, Anal. Chem., 2011, 83, 1448.
- 6. J. Shangguan, D. He, X. He, K. Wang, F. Xu, J. Liu, J. Tang, X. Yang and J. Huang, Anal. Chem., 2016,

88, 7837.

- 7. H. Deng, K. Li, Q. Zhuang, H. Peng, Q. Zhuang, A. Liu, X. Xia and W. Chen, Nanoscale, 2018, 10, 6467.
- 8. L.V. Nair , D.S. Philips , R.S. Jayasree and A. Ajayaghosh, Small, 2013, 9, 2673.
- 9. T. Shao, P. Zhang, L. Tang, S. Zhuo and C. Zhu, Microchimica Acta, 2015, 182, 1431.
- 10. C. Huang, Y. Li and T. Chen, Biosens. Bioelectron., 2007, 22, 1835.
- 11. H. Deng, G. Wu, Z. Zou, H. Peng, A. Liu, X. Lin, X. Xia and W. Chen, Chem. Commun., 2015, 51, 7847.