Supporting Information

Glucuronidation of [6]-shogaol, [8]-shogaol and [10]-shogaol by human tissues and expressed UGT enzymes: identification of UGT2B7 as the major contributor Liangliang He,^{†a} Jinjin Xu,^{†a} Qi Wang,^{ab} Yezi Zhang,^a Zifei Qin,^{*ac} Yang Yu,^{a,d} Zhengming Qian,^b Zhihong Yao^{*ad} and Xinsheng Yao^{a,d}

^aCollege of Pharmacy, Jinan University, Guangzhou 510632, P.R. China;

^bKey Laboratory of State Administration of Traditional Chinese Medicine, Sunshine 瑞

^cDepartment of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China;

^dGuangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China;

[†]These authors contributed equally to this work.

*Correspondence authors.

Associate Prof. Zhihong Yao, Tel: (086) 20-85221767, Fax: (086) 20-85221559,

E-mail: <u>yaozhihong_jnu@163.com;</u> <u>yaozhihong.jnu@gmail.com;</u>

Dr. Zifei Qin, Tel: (086) 20-85221707, E-mail: <u>qzf1989@163.com</u>

Figure Caption

- Fig. S1 Kinetic profiles for glucuronidation of shogaols by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM). Kinetic profile for glucuronidation of [6]-shogaol by HLM (A). Kinetic profile for glucuronidation of [8]-shogaol by HLM (B). Kinetic profile for glucuronidation of [10]-shogaol by HLM (C). Kinetic profile for glucuronidation of [6]-shogaol by HIM (D). Kinetic profile for glucuronidation of [8]-shogaol by HIM (E). Kinetic profile for glucuronidation of [10]-shogaol by HIM (F).
- **Fig. S2** Kinetic profiles for glucuronidation of [6]-shogaol by expressed UDPglucuronosyltransferase enzymes. Kinetic profile for glucuronidation of [6]shogaol by expressed UGT1A1 (A). Kinetic profile for glucuronidation of [6]shogaol by expressed UGT1A6 (B). Kinetic profile for glucuronidation of [6]shogaol by expressed UGT1A10 (C). Kinetic profile for glucuronidation of [6]shogaol by expressed UGT2B7 (D). Kinetic profile for glucuronidation of [6]shogaol by expressed UGT2B7 (D). Kinetic profile for glucuronidation of [6]-
- **Fig. S3** Kinetic profiles for glucuronidation of [8]-shogaol by expressed UDPglucuronosyltransferase enzymes. Kinetic profile for glucuronidation of [8]shogaol by expressed UGT1A1 (A). Kinetic profile for glucuronidation of [8]shogaol by expressed UGT1A8 (B). Kinetic profile for glucuronidation of [8]shogaol by expressed UGT1A10 (C). Kinetic profile for glucuronidation of [8]shogaol by expressed UGT2B4 (D). Kinetic profile for glucuronidation of [8]shogaol by expressed UGT2B4 (D). Kinetic profile for glucuronidation of [8]-

- **Fig. S4** Kinetic profiles for glucuronidation of [10]-shogaol by expressed UDPglucuronosyltransferase enzymes. Kinetic profile for glucuronidation of [10]shogaol by expressed UGT1A7 (A). Kinetic profile for glucuronidation of [10]shogaol by expressed UGT1A8 (B). Kinetic profile for glucuronidation of [10]shogaol by expressed UGT1A10 (C). Kinetic profile for glucuronidation of [10]shogaol by expressed UGT2B4 (D). Kinetic profile for glucuronidation of [10]shogaol by expressed UGT2B4 (D). Kinetic profile for glucuronidation of [10]-
- Fig. S5 (a) Correlation analysis between [6]-shogaol 4'-O-glucuronidation and AZT glucuronidation in a bank of individual human liver microsomes (n = 9). (b) Correlation analysis between [8]-shogaol 4'-O-glucuronidation and AZT glucuronidation in a bank of individual human liver microsomes (n = 9). (c) Correlation analysis between [10]-shogaol 4'-O-glucuronidation and AZT glucuronidation in a bank of individual human liver microsomes (n = 9).
- Fig. S6 The HRESIMS spectrum (S6-1) and 13C-NMR spectrum (S6-2) of reference standard of [6]-shogaol.
- Fig. S7 The HRESIMS spectrum (S6-1) and 13C-NMR spectrum (S6-2) of reference standard of [6]-shogaol.
- Fig. S8 The HRESIMS spectrum (S6-1) and 13C-NMR spectrum (S6-2) of reference standard of [6]-shogaol.

Fig. S1

0.25₇ B

UGT1A6

0.0 0 10 20 30 40 50 [10]-shogaol, μΜ

Fig. S4

Fig. S5

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for I-FIT = 2

Monoisotopic Mass, Even Electron Ions 86 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-50 23Na: 0-1 G3A1 20170710-16 225 (1.817) Cm (221:228)

Fig. S6-1

Fig. S6

Page 1

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 101 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-100 O: 0-50 Na: 0-1 G7F3 2017110618 255 (2.053) Cm (252:256)

100 137	7.0610													
*	138.0638	305.2119	441.2	2650 477	2082 60	9.4162	767,4457	903.506	3 962.5413	1098.	5524 1266	.7069	1344.7338	
100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
Minimum: Maximum:		5.0	5.0	-1.5 50.0										
Mass 305, 2119	Calc. Mass 305.2117	mDa 0,2	PPM 0.7	DBE 5.5	i-FIT 28, 7	Norm n/a	Conf(%) n/a	Formula C19 H29	03					

Fig. S7-1

Fig. S7-2

Fig. S7

Page 1

1: TOF MS ES+

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for I-FIT = 2

Monoisotopic Mass, Even Electron Ions 116 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-50 23Na: 0-1 G1185 20170710-11 292 (2.352) Cm (291:298)

20170710-1	1 292 (2	.352) Cm (2	91:298)										1: TOF MS ES+ 5,71e+005
100-									2865				
~													
1												1	
-												1	
%-													
-			333.	2431								426.2894	
1				334,2484						420 3	318	427.2898	
1	313.2504	317.2315		6	351.2568 35	55.2248	375.2627	391.2469	403.3012			III	449.2778,453.3260
300	310	320	330	340	350 3	360 37	0 380	390	400	410	420	430 440	450
Minimum:					-1.5								
Maximum:			10.0	5.0	100.0								
Mass	Cal	c. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf (%)	Formul	a			
333.2431	333	3.2430	0.1	0.3	5.5	24.3	n/a	n/a	C21 H3	3 03			

Fig. S8-1

Fig. S8

Page 1