Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Electropolymerization of thienyl tethered comonomers and application towards electrocatalytic reduction of nitrobenzene

Abbasriyaludeen Abdul Raheem,^{a,c} Sivalingam Gopi,^b Murugavel Kathiresan^{*b,c} and Chandrasekar Praveen^{*a,c}

^aFunctional Materials Division, ^bElectro-Organic Division

CSIR-Central Electrochemical Research Institute, Karaikudi-630003, Tamil Nadu, India

*kathiresan.murugavel@gmail.com; chandrasekar.praveen@gmail.com

Contents

Instruments and measurements	S2
¹ H & ¹³ C NMR spectra of 3a-3f	S3
Cyclic Voltammograms of monomers 3a-f	S12
Electrochromicity of monomers 3a-f	S13
FTIR spectra of 3a-3f and 4a-4f	S14
UV-vis spectra of 3a-3f as thin film	S15
UV-vis spectra of 4a-4f	S17
Photoluminescence spectra of 4a-4f	S19
SEM images of Polymers 4a-4f	S20
AFM topographic and height profile images of 4a-4f	S22
Variations of current vs square root of scan rate	S26

Instruments and measurements

The morphological structures of the prepared samples were captured using Scanning Electron Microscope (SEM) of TESCAN, VEGA 3 with Bruker Detector.FTIR analysis was carried out on a BRUKER - TENSOR 27 (Optik GmbH) using RT DLaTGS (Varian) Detector. UV-Vis spectra were recorded on a Hewlett-Pacard 8453 spectrometer. PL Fluorescence was recorded in Jasco spectrofluorometer (FP-8500). Cyclic voltammetry was carried on an autolab PGSTAT 302N workstation at room temperature in a standard three-electrode cell. ITO/GC electrode was used as a working electrode, Pt was used as a counter electrode and Ag/AgCl/KCl (3 M) was used as a reference electrode. The electrochemical polymerization was studied at room temperature using DCM and 0.1 M TBA.PF₆ as supporting electrolyte at a scan rate of 50 mVs⁻¹. ITO (300 mm \times 300 mm \times 1.1 mm), Resistivity: 8 Ω . For all cyclic voltammetric experiments, 5 mg of the monomer was dissolved in 5 mL supporting electrolyte. Electrochemical polymerisation of hybrid thiophene based monomers was carried out in a three electrode set up using Autolab Potentiostat at room temperature using 10 times higher concentration as mentioned above in DCM and 0.1 M TBA.PF₆ as supporting electrolyte. Initially cyclic voltammograms were recorded for the monomers and based on the CV, oxidation potentials for constant potential electrolysis was fixed. All the bulk electrolysis was carried out on ITO electrode (onset potential + 200 mV) to obtain polymer films on the transparent electrode for preliminary electrochromism studies. Thick films of thiophene polymers were obtained on ITO electrodes, after polymerisation, the electrode was removed, rinsed and carefully dried. It was then subjected to electrochemical characterisation, AFM and SEM morphological analysis.

S.No	Polymer	No. of Cycles
1	4a	10
2	4b	12
3	4c	25
4	4d	10
5	4e	25
6	4f	10
7	4g	14
8	4h	12

¹H & ¹³C NMR Spectrum of Compound **3a**

¹H & ¹³C NMR Spectrum of Compound **3b**

¹H & ¹³C NMR Spectrum of Compound **3c**

¹H & ¹³C NMR Spectrum of Compound **3d**

¹H & ¹³C NMR Spectrum of Compound **3e**

¹H & ¹³C NMR Spectrum of Compound **3f**

¹H & ¹³C NMR Spectrum of Compound **3g**

Fig. S1 Cyclic Voltammograms of monomers 3a-h on GC electrode in 0.1 M TBA.PF₆ in CH₂Cl₂

Fig. S2 Cyclic voltammogram of monomers **3a-h** (black) numbered correspondingly and its corresponding electropolymer **4a-h** (red) in 0.1 M TBA.PF₆ in DCM on ITO electrode. Visual color changes upon oxidation and reduction on the ITO electrode is shown as inset.

Fig. S3 FTIR spectrum of monomer 3a-3h (black) and polymer 4a-4h (red)

Fig. S4 UV-vis spectra of monomer **3a-3h** as thin film

Fig. S5 UV-Vis spectra of Polymer 4a-4h in 1:1 DCM-THF mixture

Fig. S6 Photoluminescence spectra of polymer 4a-4h in 1:1 DCM-THF mixture

Compounds	PL-λ _{em} (nm)	Shift (nm)	
4a	473	550 ^a	
4b	405	2900^{b}	
4c	403	2000^{a}	
4d	398	3500^{b}	
4e	387	4100^{b}	
4f	402	3200^{b}	
4 g	524	5200 ^{<i>a</i>}	
4h	546	5000 ^{<i>a</i>}	
^a Stokes shift; ^b Anti-Stokes shift			

Table S1 Polymers PL data

4e

Fig. S7 SEM images of Polymers 4a-4h

4a

4d

4f

Fig S8 AFM image and height profile of polymers 4a-4h

Fig S9 Variations of current vs square root of scan rate using polymer 4g (top) and 4h (bottom)