Electronic supplementary information

Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane

Jingxuan Long, Wenfeng Zhao, Yufei Xu, Weibo Wu, Chengjiang Fang, Hu Li*, Song Yang*

State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China

* Corresponding authors: E-mails: jhzx.msm@gmail.com (SY); hli13@gzu.edu.cn (HL) Tel.: +86 (851) 8829-2171. Fax: +86 (851) 8829-2170

Table of Contents:

Fig. S1 GC-MS spectrum of the siloxane intermediate in hydrogenation of FUR to FFA
Fig. S2 ¹H NMR spectra of the siloxane intermediate in hydrogenation of FUR to FFA
Fig. S3 ¹H-¹³C HSQC NMR spectrum of the siloxane intermediate in hydrogenation of FUR to FFA
Fig. S4 STEM and elemental mapping profiles of recovered Cs₂CO₃ catalyst. (A) STEM-HAADF image and elemental mappings of (B)
Cs, (C) Si, (D) C and (E) O
Table S1 Effect of different hydrosilanes on the hydrogenation of FUR to FFA
Table S2 The recycling study of cesium carbonate-catalyzed reduction of FUR to FFA
Fig. S5 ¹H NMR spectra of the formation of formate during hydrosilylation reaction
Fig. S6 The possible structure of pentavalent silicate intermediate in the hydrogenation of FUR to FFA
Fig. S7 The possible structure of hexavalent silicate intermediate in the hydrogenation of FUR to FFA
Fig. S8 ¹H NMR spectra of the interaction between PMHS and Cs₂CO₃
Fig. S9 GC-MS spectrum of the interaction between PMHS and Cs₂CO₃
Fig. S10 GC-MS spectrum of dimethoxydiphenylsilane formed in the reaction of Ph₂SiH₂ and MeOH

Fig. S1 GC-MS spectrum of the siloxane intermediate in hydrogenation of FUR to FFA; Reaction conditions: 0.5 mmol FUR, PhSiH₃ (1.47 mmol H⁻), 2 mL DMF, 16 mg Cs₂CO₃, 25 °C, and 6 h.

Fig. S2 ¹H NMR spectra of the siloxane intermediate in hydrogenation of FUR to FFA. Reaction conditions: 0.5 mmol FUR, PhSiH₃ (1.47 mmol \dot{H}), 1 mL DMSO- d_6 , 16 mg Cs₂CO₃, 25 °C, and 6 h.

Fig. S3. ¹H-¹³C HSQC NMR spectrum of the siloxane intermediate in hydrogenation of FUR to FFA. Reaction conditions: 0.5 mmol FUR, $PhSiH_3$ (1.47 mmol H⁻), 1 mL DMSO- d_6 , 16 mg Cs₂CO₃, 25 °C, and 6 h.

Entry	H-donor	Yield (%)	Conversion (%)	
1	Et ₃ SiH	0.2	0.6	
2	(MeO) ₃ SiH	5.4	10.0	
3	Me ₃ Si-O-MeSiH-O-SiMe ₃	30.7	40.0	
4	(EtO) ₃ SiH	32.5	42.0	
5	Me ₂ SiH-O-HSiMe ₂	50.7	60.0	
6	Ph ₂ SiH ₂	88.4	90.0	
7	PhSiH ₃	99.1	99.2	
8	PMHS	99.5	99.5	

Table S1 Effect of different hydrosilanes on the hydrogenation of FUR to FFA

Reaction conditions: 0.5 mmol FUR, 16 mg Cs₂CO₃, H-donor (1.47 mmol H⁻), 2 mL DMF, 80 °C, and 6 h.

				-		
Entry	Time (h)	T (°C)	Catalyst dosage (mg)	Reaction cycle	Yield (%)	Conv. (%)
			(2)	5		
1	6	80	16	1	99	99

Table S2 The recycling study of cesium carbonate-catalyzed reduction of FUR to FFA

2	6	80	16	2	30.4	43.1
3	6	25	16	1	90	99
4	6	25	16	2	47	48

Reaction conditions: 0.5 mmol FUR, PMHS (1.47 mmol H⁻), 2 mL DMF.

Fig. S4 STEM and elemental mapping profiles of recovered Cs_2CO_3 catalyst. (A) STEM-HAADF image and elemental mappings of (B) Cs, (C) Si, (D) C and (E) O

Fig. S5 ¹H NMR spectra of the formation of formate during hydrosilylation reaction. Reaction conditions (A): PhSiH₃ (1.47 mmol H⁻), 1 mL DMSO- d_6 , 16 mg Cs₂CO₃, 25 °C, and 6 h; Reaction conditions (B): 0.5 mmol FUR, PMHS (1.47 mmol H⁻), 1 mL DMSO- d_6 , 16 mg Cs₂CO₃, 25 °C, and 6 h.

Pentavalent silicate

Fig. S6 The possible structure of pentavalent silicate intermediate in the hydrogenation of FUR to FFA.

Fig. S7 The possible structure of hexavalent silicate intermediate in the hydrogenation of FUR to FFA.

Fig. S8 ¹H NMR spectra of the interaction between PMHS and Cs_2CO_3 . Reaction conditions: PMHS (1.47 mmol H⁻), 1 mL DMSO- d_6 , 16 mg Cs_2CO_3 , 25 °C, and 6 h.

S5

S6

Fig. S9 GC-MS spectra of various alcohols obtained from hydrogenation of corresponding aldehyde

Fig. S10 GC-MS spectrum of dimethoxydiphenylsilane formed in the reaction of Ph₂SiH₂ and MeOH