Supporting Information

Removal of arsenic(V) from aqueous solutions using sulfur-doped Fe₃O₄ nanoparticles

Junhui Liu,^a Long Kong,^{a,*} Xueqiong Huang,^a Min Liu,^a and Liang Li^{a,b,*}

^aSchool of Environmental Science and Engineering, Shanghai Jiao Tong University,

800 Dongchuan Road, Shanghai 200240, China

^bShanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road,

Shanghai 200092, China

*Corresponding author. E-mail: liangli117@sjtu.edu.cn; longmao88@sjtu.edu.cn

Fig. S1 (a) Adsorbent dispersed in aqueous solution; (b) Adsorbent naturally precipitated for 30 min; (c) Adsorbent separated with permanent magnet within 1 min.

Fig. S2 XRD patterns of the prepared Fe₃O₄ NPs and Fe₃O₄:S NPs.

Fig. S3 XRD spectra of Fe₃O₄ NPs before and after As(V) adsorption.

As shown in Fig. S3, the characteristic diffraction peaks of prepared nanoparticles at 30.28°, 35.60°, 43.38°, 53.94°, 57.40°, and 62.86° matched well with the (220),

(311), (400), (422), (511), and (440) lattice planes of the standard magnetite Fe_3O_4 (JCPDS 19-0629), respectively. It proved that Fe_3O_4 NPs were successfully prepared and well crystallized. Compared with the Fe_3O_4 NPs before adsorption, it was clear that there was not any shift of characteristic peaks and no new peak occurred after As(V) adsorption, which meant the well crystallized Fe_3O_4 nanoparticles were stable in the As(V) removal process.

The comparison of XRD spectra of Fe_3O_4 NPs and Fe_3O_4 :S NPs was shown in Fig. S2. It was notable that the characteristic peaks of Fe_3O_4 :S NPs shifted to smaller angles compared with Fe_3O_4 NPs, which might attribute to the doping of sulfur.[1,2]

Fig. S4 EDX patterns of Fe₃O₄ NPs and Fe₃O₄:S NPs.

As shown in Fig. S4, sulfur had successfully doped into Fe_3O_4 NPs, since we could observe the peaks of sulfur in the EDX pattern of Fe_3O_4 :S NPs.

Fig. S5 FTIR spectra of Fe₃O₄ NPs before and after As(V) adsorption.

The FTIR spectra of Fe_3O_4 NPs before and after As(V) adsorption were shown in Fig. S5. There were only small shifts of the peaks that could be observed in the spectra. In addition, the peak corresponded to the stretching vibration of As-O at 822 cm⁻¹ could not be observed obviously. This might attribute to the small adsorption amount of As(V).

Fig. S6 Fe releasing kinetics of Fe₃O₄:S NPs and Fe₃O₄ NPs during one week.

As shown in Fig. S6, the release amount of Fe almost maintained an equilibrium state from one day to one-week. It supported our theory that the release of Fe from Fe_3O_4 :S NPs was from Fe-S on the surface, which is easier to break than Fe-O. Herein, Fe_3O_4 :S NPs could release more Fe ions in water than pure Fe_3O_4 NPs. In addition, the stability of the adsorbent was confirmed.

References:

[1] S. O. Hwang, C. H. Kim, Y. Myung, S. H. Park, J. Park, J. Kim, C. S. Han and J.

- Y. Kim, J. Phys. Chem. C., 2008, 112, 13911–13916.
- [2] A. B. Patil, K. R. Patil and S. K. Pardeshi, J. Hazard Mater., 2010, 183, 315–323.