Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Ag₈SnS₆: a new IR Solar Absorber Material with a near

Optimal Bandgap

Patsorn Boon-on,^a Belete Asefa Aragaw^{a,b}, Chun-Yen Lee,^a Jen-Bin Shi^c

and Ming-Way Lee^{a,1}

^aInstitute of Nanoscience and Department of Physics, National Chung

Hsing University, Taichung 402, Taiwan

^bDepartment of Chemistry, Bahir Dar University, P.O. Box 79, Bahir Dar,

Ethiopia

^cDepartment of Electronic Engineering, Feng Chia University, Taichung, 40724, Taiwan

¹ Corresponding author e-mail: mwl@phys.nchu.edu.tw

Fig. S1 XRD pattern of Ag-Sn-S sample before heat treatment. The material is mostly amorphous. Only a weak Ag_2S peak at 37°

corresponding to the (200) plane is observed.