Ruthenium oxide modified hierarchically porous boron-doped

graphene aerogels as oxygen electrode for lithium oxygen batteries

Xiuhui Zhang^a, Chunguang Chen^a, Xiang Chen^b, Tie Liu^a, Mengmeng Liu^b, Congcong Zhang^b, Tao, Huang^b, Aishui Yu^{a,b,*}

^aDepartment of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.

^bLaboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.

*E-mail: <u>asyu@fudan.edu.cn</u>

Fig. S1. Nitrogen adsorption-desorption isotherms and the pore size distribution curves (insert) of HRG (a) and B-HRG (b).

Fig. S2. Low-magnification SEM images of (a) (b) HRG, and (d) (e) B-HRG.

Fig. S3. (a) Rate capacities of the Li–O₂ battery based on HRG/KB at different current

densities. (b) the discharge-charge curves of HRG/KB electrode with a fixed capacity of 500 mAh g⁻¹ at a current density of 0.1 mA cm⁻².(c) Electrochemical impedance spectra and (d) FTIR spectra of HRG /KB electrode in the first cycle at current density of 0.05 mA/cm².

Fig. S4. SEM images of the HRG/KB electrode (a) pristine, (b) after the first discharge process, (c) after the first charge process.