## **Supporting information**

## In Situ Synthesis of Low-Cost and Large-Scale Flexible Metal Nanoparticle-Polymer Composites Film as Highly Sensitive SERS Substrate for Surface Trace Analysis

Chenghua Zong <sup>a</sup>, Mengyi Ge <sup>a</sup>, Hong Pan <sup>a</sup>, Jing Wang, Xinming Nie <sup>b</sup>, Qingquan Zhang <sup>a</sup>, Wenfeng Zhao <sup>a</sup>, Xiaojun Liu <sup>\*a</sup>, and Yang Yu <sup>\*a</sup>

<sup>a</sup> School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China, 221116

<sup>b</sup> School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116,

China

Fig.S1. Photographs of the reaction medium after the reduction reaction (from left to right: pure ethanol; ethanol/water binary solution with a volume ratio of 7:1; 5:1; 3:1; 2:1; and pure water, respectively).

Fig. S2. SERS spectra of  $1 \times 10^{-6}$  M p-ATP on the as-prepared film (A) with different Ag content and (B) treated with different concentration of nitric acid.

Fig. S3. SEM images of the AgNPs@CA films that were prepared at different Ag content. The mass ratio of the Ag element in the initial DMF solution containing 0.6g CA was (A) 10 mg/g; (B) 5.0 mg/g; (C) 2.5 mg/g; (D) 1.25 mg/g, respectively.

Fig. S4 (A) SERS spectra of p-ATP with different concentrations; (B) Calibration plot of the SERS intensity at 1581cm<sup>-1</sup> of P- ATP dropped on the substrates with its concentration.

Text S1: Calculation of SERS Enhancement Factor (EF)

Fig. S5. (a) Normal Raman spectrum of bulk p-ATP, and (b) SERS spectra of  $5 \times 10^{-8}$  M p-ATP on the AgNPs@CA composite film.

Fig. S6. SEM images of the AuNPs@CA composite films that were prepared at different Au content. The mass ratio of the Au element in the initial DMF solution containing 0.6g CA was (A) 2.5 mg/g; (B) 5.0 mg/g; (C) 10.0 mg/g; (D) 20 mg/g, respectively.



Fig.S1. Photographs of the reaction medium after the reduction reaction (from left to right: pure ethanol; ethanol/water binary solution with a volume ratio of 7:1; 5:1; 3:1; 2:1; and pure water, respectively).



Fig. S2. SERS spectra of  $1 \times 10^{-6}$  M p-ATP on the as-prepared film (A) with different Ag content and (B) treated with different concentration of nitric acid.



Fig. S3. SEM images of the AgNPs@CA films that were prepared at different Ag content. The mass ratio of the Ag element in the initial DMF solution containing 0.6g CA was (A) 10 mg/g; (B) 5.0 mg/g; (C) 2.5 mg/g; (D) 1.25 mg/g, respectively.



Fig. S4 (A) SERS spectra of p-ATP with different concentrations; (B) Calibration plot of the SERS intensity at 1388cm<sup>-1</sup> of p- ATP dropped on the substrates with its concentration.

## Text S1:

**Calculation of SERS Enhancement Factor (EF).** By takin p-ATP as the test molecule, the EF of the AgNPs@CA composite film as SERS substrate was estimated by the following formula EF =  $(I_{SERS} / I_{bulk}) \cdot (N_{bulk} / N_{surf})^{1-3}$ , where  $I_{SERS}$  and  $I_{bulk}$  are the vibration intensities in the SERS and normal Raman spectra of p-ATP, respectively.  $N_{surf}$  and  $N_{bulk}$  are the number of adsorbed molecules on the AgNPs@CA composite film and the solid p-ATP molecules within the laser spots, respectively. In detail, for determination of  $N_{surf}$  and  $N_{bulk}$ , we dropped the p-ATP solution (5× 10<sup>-8</sup> M, 5 µL of) on the obtained AgNPs@CA composite film with an area of about 0.5 cm<sup>2</sup>. Therefore, the average surface density of p-ATP was calculated as 5 × 10<sup>-13</sup>mol/cm<sup>2</sup>. Taking the sample area (ca. 10 µm in diameter) into account,  $N_{surf}$  has a value of  $3.93 \times 10^{-17}$  mol ( $N_{surf} = 5 \times 10^{-13}$  mol/cm<sup>2</sup> ×  $\pi \times 25$  µm<sup>2</sup> =  $3.93 \times 10^{-19}$  mol). Taking the laser spot (10 µm), the penetration depth (about 2 µm), the density of the solid p-ATP (1.18 g/cm<sup>3</sup>) into account,  $N_{bulk}$  had a value of  $1.48 \times 10^{-12}$  mol in the detected solid sample area. The intensity of the vibrational mode at 1581 cm<sup>-1</sup> was used to calculate the EF value. All spectra were normalized for acquisition time and laser power. The EF was calculated to be  $1.8 \times 10^7$  for the AgNPs@CA composite film.



Fig. S5 (a) Normal Raman spectrum of bulk p-ATP, and (b) SERS spectra of  $5 \times 10^{-8}$  M p-ATP on the AgNPs@CA composite film.



Fig. S6. SEM images of the AuNPs@CA composite films that were prepared at different Au content. The mass ratio of the Au element in the initial DMF solution containing 0.6g CA was (A) 2.5 mg/g; (B) 5.0 mg/g; (C) 10.0 mg/g; (D) 20 mg/g, respectively.