Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

## **Electronic Supplementary Information**

### Pd-Catalyzed [3+2] Cycloaddition of Vinylcyclopropanes with 1-Azadienes: Synthesis of

#### 4-Cyclopentylbenzo[e][1,2,3]oxathiazine 2,2-Dioxides

Yan Lin, Qijun Wang, Yang Wu, Chang Wang, Hao Jia, Cheng Zhang, Jiaxing Huang,\* and Hongchao

Guo\*

Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China

Email: hchguo@cau.edu.cn, 05084@cau.edu.cn

## Contents

| Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra  | S01–S17 |
|-----------------------------------------------------------|---------|
| X-Ray Crystallographic Data of <b>3aa</b> and <b>3aa'</b> | S19–S38 |

## Copies of <sup>1</sup>H and <sup>13</sup>C NMR Spectra



(E)-4-(2-fluorostyryl)benzo[e][1,2,3]oxathiazine 2,2-dioxide (2b)

## 



(E)-4-(2-methoxystyryl)benzo[e][1,2,3]oxathiazine 2,2-dioxide (2j)

































### S15





# X-Ray Crystallographic Data of 3-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-4-vinylcyclopentane-1,1-dicarbonitrile (3aa and 3aa').

Crystallographic data for **3aa** and **3aa**' have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number CCDC 1849601 and 1849602. These data can be obtained free of charge via www.ccdc.cam. ac.uk/data\_request/cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.



Table S1. Crystal data and structure refinement for 3aa. Identification code 3aa C22 H17 N3 O3 S Empirical formula Formula weight 403.44 Temperature 293(2) K Wavelength 0.71073 Å Crystal system Monoclinic P 1 21/n 1 Space group Unit cell dimensions  $a = 7.6209(15) \text{ Å} a = 90^{\circ}$ .  $b = 12.073(2) \text{ Å} b = 96.86(3)^{\circ}.$  $c = 21.125(4) \text{ Å} g = 90^{\circ}.$ Volume 1929.8(7) Å3 4 Ζ Density (calculated) 1.389 Mg/m3 Absorption coefficient 0.197 mm-1 F(000) 840 Theta range for data collection 1.942 to 27.506°.

Index ranges  $-9 \le h \le 9$ ,  $-15 \le k \le 15$ ,  $-27 \le l \le 27$ Reflections collected 14264 Independent reflections 4390 [R(int) = 0.0568] Completeness to theta = 25.242° 99.4 % Absorption correction None Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4390 / 0 / 262 Goodness-of-fit on F2 1.225 Final R indices [I>2sigma(I)] R1 = 0.0732, wR2 = 0.1259 R indices (all data) R1 = 0.0846, wR2 = 0.1307 Extinction coefficientn/a Largest diff. peak and hole 0.269 and -0.332 e.Å-3

Table S2. Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for **3aa**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

- S1 7351(1) 5078(1) 4472(1) 27(1)
- 01 7202(2) 4450(2) 5127(1) 31(1)
- O2 6892(3) 6189(2) 4596(1) 40(1)
- O3 9006(2) 4842(2) 4264(1) 37(1)
- N1 5803(3) 4529(2) 3971(1) 25(1)
- N2 1001(3) 5104(2) 1761(1) 32(1)
- N3 1511(3) 1595(2) 2117(1) 35(1)
- C1 5367(3) 3503(2) 4029(1) 21(1)
- C2 6124(3) 2798(2) 4560(1) 24(1)
- C3 7070(3) 3297(2) 5094(1) 29(1)
- C4 7829(4) 2703(3) 5611(1) 39(1)
- C5 7656(4) 1565(3) 5598(1) 45(1)

- C6 6733(4) 1031(3) 5079(1) 41(1)
- C7 5966(4) 1645(2) 4566(1) 31(1)
- C8 3958(3) 3066(2) 3529(1) 21(1)
- C9 3865(3) 3739(2) 2910(1) 22(1)
- C101902(3) 3579(2) 2615(1) 22(1)
- C11896(4) 3705(2) 3205(1) 28(1)
- C122067(3) 3132(2) 3761(1) 25(1)
- C131375(4) 2021(2) 3923(1) 31(1)
- C14925(4) 1744(3) 4480(2) 41(1)
- C151376(3) 4423(2) 2124(1) 22(1)
- C161647(3) 2467(2) 2325(1) 23(1)
- C175211(3) 3505(2) 2458(1) 23(1)
- C185835(4) 2442(2) 2351(1) 29(1)
- C196962(4) 2266(3) 1895(1) 38(1)
- C207483(4) 3134(3) 1538(1) 42(1)
- C216903(4) 4197(3) 1646(1) 39(1)
- C225784(3) 4379(2) 2105(1) 29(1)

Table S3. Bond lengths [Å] and angles [°] for **3aa**.

| S1-O1  | 1.5935(19) |
|--------|------------|
| S1-O2  | 1.418(2)   |
| S1-O3  | 1.413(2)   |
| S1-N1  | 1.629(2)   |
| O1-C3  | 1.397(3)   |
| N1-C1  | 1.293(3)   |
| N2-C15 | 1.137(3)   |

- N3-C16 1.141(3)
- C1-C2 1.470(3)
- C1-C8 1.508(3)
- C2-C3 1.399(3)
- C2-C7 1.398(4)
- C3-C4 1.377(4)
- C4-H4 0.9300
- C4-C5 1.380(5)
- С5-Н5 0.9300
- C5-C6 1.388(4)
- С6-Н6 0.9300
- C6-C7 1.384(4)
- С7-Н7 0.9300
- C8-H8 0.9800
- C8-C9 1.534(3)
- C8-C12 1.579(3)
- C9-H9 0.9800
- C9-C10 1.562(3)
- C9-C17 1.509(3)
- C10-C11 1.547(3)
- C10-C15 1.475(3)
- C10-C16 1.479(3)
- C11-H11A 0.9700
- C11-H11B 0.9700
- C11-C12 1.550(3)
- C12-H12 0.9800
- C12-C13 1.496(4)
- C13-H13 0.9300

| C13-C14  | 1.308(4) |
|----------|----------|
| C14-H14A | 0.9300   |
| C14-H14B | 0.9300   |
| C17-C18  | 1.397(4) |
| C17-C22  | 1.393(4) |
| C18-H18  | 0.9300   |
| C18-C19  | 1.381(4) |
| С19-Н19  | 0.9300   |
| C19-C20  | 1.377(4) |
| С20-Н20  | 0.9300   |
| C20-C21  | 1.385(5) |
| C21-H21  | 0.9300   |
| C21-C22  | 1.383(4) |
| C22-H22  | 0.9300   |

| 01-S1-N1 | 104.42(11) |
|----------|------------|
| O2-S1-O1 | 104.24(12) |
| O2-S1-N1 | 109.16(12) |
| O3-S1-O1 | 109.47(12) |
| O3-S1-O2 | 119.84(13) |
| O3-S1-N1 | 108.61(11) |
| C3-O1-S1 | 116.25(16) |
| C1-N1-S1 | 120.22(18) |
| N1-C1-C2 | 123.0(2)   |
| N1-C1-C8 | 116.0(2)   |
| C2-C1-C8 | 120.9(2)   |
| C3-C2-C1 | 118.9(2)   |
| C7-C2-C1 | 123.8(2)   |
|          |            |

| C7-C2-C3   | 117.3(2)   |
|------------|------------|
| O1-C3-C2   | 119.8(2)   |
| C4-C3-O1   | 117.3(2)   |
| C4-C3-C2   | 122.9(3)   |
| С3-С4-Н4   | 120.9      |
| C3-C4-C5   | 118.2(3)   |
| С5-С4-Н4   | 120.9      |
| С4-С5-Н5   | 119.4      |
| C4-C5-C6   | 121.2(3)   |
| С6-С5-Н5   | 119.4      |
| С5-С6-Н6   | 120.1      |
| C7-C6-C5   | 119.7(3)   |
| С7-С6-Н6   | 120.1      |
| С2-С7-Н7   | 119.6      |
| C6-C7-C2   | 120.8(3)   |
| С6-С7-Н7   | 119.6      |
| С1-С8-Н8   | 109.0      |
| C1-C8-C9   | 111.6(2)   |
| C1-C8-C12  | 111.45(19) |
| С9-С8-Н8   | 109.0      |
| C9-C8-C12  | 106.63(19) |
| С12-С8-Н8  | 109.0      |
| С8-С9-Н9   | 106.9      |
| C8-C9-C10  | 102.67(19) |
| С10-С9-Н9  | 106.9      |
| C17-C9-C8  | 118.3(2)   |
| С17-С9-Н9  | 106.9      |
| C17-C9-C10 | 114.52(19) |

C11-C10-C9102.09(19)

C15-C10-C9111.2(2)

- C15-C10-C11 112.3(2)
- C15-C10-C16 109.0(2)

C16-C10-C9110.5(2)

- C16-C10-C11 111.7(2)
- C10-C11-H11A 110.6
- C10-C11-H11B 110.6
- C10-C11-C12 105.7(2)
- H11A-C11-H11B 108.7
- C12-C11-H11A 110.6
- C12-C11-H11B 110.6
- C8-C12-H12108.9
- C11-C12-C8104.61(19)
- C11-C12-H12 108.9
- C13-C12-C8112.7(2)
- C13-C12-C11 112.7(2)
- C13-C12-H12 108.9
- С12-С13-Н13 117.5
- C14-C13-C12 124.9(3)
- С14-С13-Н13 117.5
- C13-C14-H14A 120.0
- C13-C14-H14B 120.0
- H14A-C14-H14B 120.0
- N2-C15-C10177.4(3)
- N3-C16-C10177.2(3)
- C18-C17-C9123.1(2)
- C22-C17-C9118.5(2)

| C22-C17-C18 | 118.3(2) |
|-------------|----------|
| C17-C18-H18 | 119.8    |
| C19-C18-C17 | 120.4(3) |
| C19-C18-H18 | 119.8    |
| С18-С19-Н19 | 119.7    |
| C20-C19-C18 | 120.6(3) |
| С20-С19-Н19 | 119.7    |
| С19-С20-Н20 | 120.1    |
| C19-C20-C21 | 119.8(3) |
| С21-С20-Н20 | 120.1    |
| С20-С21-Н21 | 120.1    |
| C22-C21-C20 | 119.9(3) |
| С22-С21-Н21 | 120.1    |
| С17-С22-Н22 | 119.5    |
| C21-C22-C17 | 121.0(3) |
| С21-С22-Н22 | 119.5    |
|             |          |

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters ( $Å^2 x 10^3$ ) for **3aa**. The anisotropic displacement factor exponent takes the form: -2p2[h2 a\*2U11 + ... + 2hka\*b\*U12]

| U11U2    | 22 U3 | 3U23U1 | 3U12  |      |       |  |
|----------|-------|--------|-------|------|-------|--|
| S1 28(1) | 30(1) | 24(1)  | -7(1) | 3(1) | -7(1) |  |
| O1 32(1) | 39(1) | 22(1)  | -8(1) | 1(1) | -7(1) |  |
|          |       |        |       | S25  |       |  |

| O2 47(1) | 29(1) | 44(1) | -14(1) 3(1) -7(1)  |
|----------|-------|-------|--------------------|
| O3 30(1) | 51(1) | 30(1) | -10(1) 7(1) -10(1) |
| N1 26(1) | 24(1) | 24(1) | -3(1) -2(1) -1(1)  |
| N2 34(1) | 25(1) | 34(1) | 5(1)-5(1) 0(1)     |
| N3 41(1) | 26(1) | 36(1) | -2(1) -2(1) -2(1)  |
| C1 22(1) | 23(1) | 18(1) | -3(1) 3(1) 1(1)    |
| C2 21(1) | 31(1) | 20(1) | 3(1)0(1) 0(1)      |
| C3 25(1) | 39(2) | 24(1) | 1(1)3(1) -2(1)     |
| C4 32(2) | 62(2) | 23(1) | 5(1)-4(1) -3(2)    |
| C5 34(2) | 64(2) | 34(2) | 25(2) -5(1) 0(2)   |
| C6 36(2) | 39(2) | 45(2) | 19(1) -4(1) -4(1)  |
| C7 28(1) | 32(2) | 32(1) | 6(1)-3(1) 0(1)     |
| C8 23(1) | 18(1) | 20(1) | -1(1) -1(1) 0(1)   |
| C9 25(1) | 18(1) | 20(1) | -1(1) -2(1) -1(1)  |
| C1022(1) | 19(1) | 22(1) | 0(1)-1(1) 1(1)     |
| C1128(1) | 30(1) | 26(1) | 0(1)4(1) 4(1)      |
| C1228(1) | 24(1) | 22(1) | -1(1) 3(1) 0(1)    |
| C1331(2) | 28(1) | 33(1) | -2(1) 2(1) -2(1)   |
| C1447(2) | 33(2) | 45(2) | 6(1)12(2) -7(2)    |
| C1523(1) | 18(1) | 25(1) | -3(1) -2(1) 0(1)   |
| C1622(1) | 24(1) | 22(1) | 4(1)-2(1) 1(1)     |
| C1723(1) | 26(1) | 19(1) | -2(1) -3(1) -3(1)  |
| C1829(1) | 29(1) | 30(1) | -3(1) 4(1) 0(1)    |
| C1931(2) | 44(2) | 39(2) | -13(1) 4(1) 4(1)   |
| C2029(2) | 67(2) | 32(2) | -6(2) 7(1) -1(2)   |
| C2129(2) | 54(2) | 34(2) | 11(1) 4(1) -7(1)   |
| C2226(1) | 30(2) | 31(1) | 4(1)-1(1) -1(1)    |

Table S5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for **3aa**.

|     | X    | у   | Z    | U(eq)             |    |    |
|-----|------|-----|------|-------------------|----|----|
|     |      |     |      |                   |    |    |
| H4  | 844  | 12  | 3058 | 8 59              | 61 | 47 |
| H5  | 816  | 66  | 1149 | 9 594             | 42 | 53 |
| H6  | 663  | 31  | 263  | 5077              | 49 |    |
| H7  | 533  | 37  | 1280 | 6 422             | 21 | 37 |
| H8  | 422  | 22  | 2293 | 3 343             | 37 | 25 |
| H9  | 400  | 00  | 4520 | 0 30              | 33 | 26 |
| H1  | lA   | -25 | 3    | 3351              | 31 | 31 |
| H1  | 1B   | 729 | 448  | 1 33              | 00 | 33 |
| H12 | 2213 | 30  | 3608 | 8 41.             | 39 | 30 |
| H13 | 3125 | 55  | 1488 | 8 36              | 03 | 37 |
| H14 | 4A   | 102 | 6    | 2256              | 48 | 11 |
| H14 | 4B   | 504 | 103: | 5 454             | 45 | 49 |
| H18 | 8548 | 39  | 1848 | 8 25              | 87 | 35 |
| H19 | 9737 | 74  | 1550 | 5 182             | 29 | 46 |
| H2( | 0822 | 22  | 300′ | 7 122             | 26 | 51 |
| H2  | 1726 | 54  | 478′ | 7 14              | 09 | 47 |
| H22 | 254( | )9  | 5090 | 5 21 <sup>°</sup> | 79 | 35 |



Table S6. Crystal data and structure refinement for 3aa'. Identification code 3aa' **Empirical** formula C22 H17 N3 O3 S Formula weight 403.44 Temperature 293(2) K 0.71073 Å Wavelength Triclinic Crystal system P-1 Space group Unit cell dimensions  $a = 8.2461(16) \text{ Å} a = 104.17(3)^{\circ}$ .  $b = 10.300(2) \text{ Å} b = 99.94(3)^{\circ}.$  $c = 12.879(3) \text{ Å} g = 105.52(3)^{\circ}.$ Volume 988.1(4) Å3 Ζ 2 Density (calculated) 1.356 Mg/m3 Absorption coefficient 0.193 mm-1 F(000) 420 Crystal size ? x ? x ? mm3 Theta range for data collection 1.687 to 27.470°. Index ranges-10<=h<=10, -13<=k<=13, -16<=l<=16 Reflections collected 13604 Independent reflections 4495 [R(int) = 0.0431]Completeness to theta =  $25.242^{\circ}$  99.6 % Absorption correction None Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4495 / 12 / 262 Goodness-of-fit on F2 1.101 Final R indices [I>2sigma(I)] R1 = 0.0567, wR2 = 0.1206 R indices (all data) R1 = 0.0642, wR2 = 0.1254Extinction coefficientn/a Largest diff. peak and hole 0.430 and -0.350 e.Å-3

Table S7. Atomic coordinates (x 104) and equivalent isotropic displacement parameters  $(Å^2 x 10^3)$  for **3aa'**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

- x y z U(eq)
- S1 1766(1) 3918(1) 4279(1) 28(1)
- 01 3526(2) 3614(2) 4112(1) 31(1)
- O2 1651(2) 4944(2) 3736(1) 34(1)
- O3 398(2) 2605(2) 3940(1) 38(1)
- N1 3973(3) 6073(2) 10584(2) 43(1)
- N2 -335(3) 7221(2) 9281(2) 45(1)
- N3 2119(2) 4611(2) 5611(1) 26(1)
- C1 4257(3) 2981(2) 4831(2) 26(1)
- C2 5259(3) 2191(2) 4445(2) 32(1)
- C3 6106(3) 1639(2) 5159(2) 34(1)
- C4 5932(3) 1862(2) 6237(2) 31(1)
- C5 4932(3) 2661(2) 6610(2) 28(1)
- C6 4062(2) 3252(2) 5914(2) 24(1)
- C7 3060(2) 4170(2) 6275(2) 23(1)
- C8 3024(3) 4590(2) 7480(2) 24(1)
- C9 1696(3) 3360(2) 7731(2) 34(1)
- C10513(3) 4076(2) 8291(2) 31(1)
- C111604(3) 5652(2) 8782(2) 26(1)
- C122483(2) 5920(2) 7836(2) 23(1)
- C13635(3) 2091(3) 6774(2) 48(1)

- C14383(4) 782(3) 6761(4) 82(1)
- C153860(2) 7358(2) 8154(2) 24(1)
- C163314(3) 8514(2) 8089(2) 28(1)
- C174508(3) 9862(2) 8392(2) 35(1)
- C186259(3) 10076(2) 8752(2) 38(1)
- C196822(3) 8945(3) 8821(2) 41(1)
- C205627(3) 7595(2) 8530(2) 33(1)
- C212944(3) 5903(2) 9809(2) 30(1)
- C22527(3) 6555(2) 9055(2) 31(1)

Table S8. Bond lengths [Å] and angles [°] for **3aa'**.

- S1-O1 1.6028(16)
- S1-O2 1.4172(15)
- S1-O3 1.4195(17)
- S1-N3 1.6288(18)
- O1-C1 1.400(2)
- N1-C21 1.136(3)
- N2-C22 1.139(3)
- N3-C7 1.300(2)
- C1-C2 1.377(3)
- C1-C6 1.399(3)
- C2-H2 0.9300
- C2-C3 1.380(3)

- C3-H3 0.9300
- C3-C4 1.390(3)
- C4-H4 0.9300
- C4-C5 1.376(3)
- С5-Н5 0.9300
- C5-C6 1.402(3)
- C6-C7 1.460(3)
- C7-C8 1.513(3)
- C8-H8 0.9800
- C8-C9 1.578(3)
- C8-C12 1.541(3)
- С9-Н9 0.9800
- C9-C10 1.544(3)
- C9-C13 1.490(3)
- C10-H10A 0.9700
- C10-H10B 0.9700
- C10-C11 1.537(3)
- C11-C12 1.565(3)
- C11-C21 1.487(3)
- C11-C22 1.472(3)
- C12-H12 0.9800
- C12-C15 1.515(3)
- C13-H13 0.9300
- C13-C14 1.304(4)
- C14-H14A 0.9300

| C14-H14B | 0.9300   |
|----------|----------|
| C15-C16  | 1.397(3) |
| C15-C20  | 1.387(3) |
| С16-Н16  | 0.9300   |
| C16-C17  | 1.386(3) |
| С17-Н17  | 0.9300   |
| C17-C18  | 1.378(3) |
| C18-H18  | 0.9300   |
| C18-C19  | 1.380(3) |
| С19-Н19  | 0.9300   |

- C19-C20 1.389(3)
- С20-Н20 0.9300
- O1-S1-N3 104.95(9)
- O2-S1-O1 104.33(9)
- O2-S1-O3 119.56(9)
- O2-S1-N3 110.16(9)
- O3-S1-O1 108.63(9)
- O3-S1-N3 108.22(10)
- C1-O1-S1 116.74(13)
- C7-N3-S1 118.94(14)
- C2-C1-O1 116.76(18)
- C2-C1-C6 123.05(18)
- C6-C1-O1 120.00(17)
- С1-С2-Н2 120.8

| C1-C2-C3  | 118.4(2)   |
|-----------|------------|
| С3-С2-Н2  | 120.8      |
| С2-С3-Н3  | 119.7      |
| C2-C3-C4  | 120.6(2)   |
| С4-С3-Н3  | 119.7      |
| С3-С4-Н4  | 120.0      |
| C5-C4-C3  | 120.09(19) |
| С5-С4-Н4  | 120.0      |
| С4-С5-Н5  | 119.5      |
| C4-C5-C6  | 121.06(19) |
| С6-С5-Н5  | 119.5      |
| C1-C6-C5  | 116.74(18) |
| C1-C6-C7  | 119.48(17) |
| C5-C6-C7  | 123.71(18) |
| N3-C7-C6  | 123.83(17) |
| N3-C7-C8  | 117.02(17) |
| C6-C7-C8  | 119.08(16) |
| С7-С8-Н8  | 108.5      |
| C7-C8-C9  | 110.71(16) |
| C7-C8-C12 | 113.58(16) |
| С9-С8-Н8  | 108.5      |
| С12-С8-Н8 | 108.5      |
| C12-C8-C9 | 106.82(16) |
| С8-С9-Н9  | 108.1      |
|           |            |

C10-C9-C8 104.45(16)

С10-С9-Н9 108.1

C13-C9-C8 117.19(19)

С13-С9-Н9 108.1

- C13-C9-C10110.66(19)
- C9-C10-H10A 110.7
- С9-С10-Н10В 110.7
- H10A-C10-H10B 108.8
- C11-C10-C9105.02(17)
- C11-C10-H10A 110.7
- C11-C10-H10B 110.7
- C10-C11-C12 102.00(16)
- C21-C11-C10 110.94(17)
- C21-C11-C12 110.52(16)
- C22-C11-C10 112.18(17)
- C22-C11-C12 113.20(17)
- C22-C11-C21 107.98(17)
- C8-C12-C11102.23(15)

C8-C12-H12107.2

- С11-С12-Н12 107.2
- C15-C12-C8118.37(16)
- C15-C12-C11 114.00(16)
- С15-С12-Н12 107.2

С9-С13-Н13117.4

C14-C13-C9125.1(3)

С14-С13-Н13 117.4

C13-C14-H14A 120.0

C13-C14-H14B 120.0

- H14A-C14-H14B 120.0
- C16-C15-C12 118.01(17)
- C20-C15-C12 123.67(18)
- C20-C15-C16 118.30(19)
- С15-С16-Н16 119.6
- C17-C16-C15 120.75(19)
- C17-C16-H16 119.6
- С16-С17-Н17 119.9
- C18-C17-C16 120.2(2)
- C18-C17-H17 119.9
- C17-C18-H18 120.1
- C17-C18-C19 119.8(2)
- С19-С18-Н18 120.1
- С18-С19-Н19 119.9
- C18-C19-C20 120.2(2)
- С20-С19-Н19 119.9
- C15-C20-C19 120.8(2)
- С15-С20-Н20 119.6
- С19-С20-Н20 119.6
- N1-C21-C11178.7(2)

N2-C22-C11177.7(2)

Symmetry transformations used to generate equivalent atoms:

|            | U11U22 | 2 U3  | 3U23U1 | 3U12      |            |       |
|------------|--------|-------|--------|-----------|------------|-------|
| <b>S</b> 1 | 30(1)  | 28(1) | 20(1)  | 5(1)-1(1) | 7(1        | .)    |
| 01         | 39(1)  | 36(1) | 20(1)  | 9(1)6(1)  | 15(        | (1)   |
| 02         | 39(1)  | 36(1) | 24(1)  | 13(1) 0(  | 1)         | 12(1) |
| 03         | 38(1)  | 31(1) | 31(1)  | 4(1)-5(1) | 0(1        | .)    |
| N1         | 51(1)  | 54(1) | 25(1)  | 10(1) 3(  | 1)         | 24(1) |
| N2         | 40(1)  | 57(1) | 45(1)  | 15(1) 14  | (1)        | 25(1) |
| N3         | 28(1)  | 26(1) | 20(1)  | 6(1)2(1)  | 7(1        | )     |
| C1         | 31(1)  | 24(1) | 20(1)  | 5(1)1(1)  | 7(1        | .)    |
| C2         | 39(1)  | 29(1) | 25(1)  | 4(1)10(1) | 10(        | (1)   |
| C3         | 35(1)  | 28(1) | 37(1)  | 5(1)9(1)  | 12(        | (1)   |
| C4         | 35(1)  | 27(1) | 32(1)  | 10(1) 4(  | 1)         | 12(1) |
| C5         | 32(1)  | 26(1) | 22(1)  | 6(1)4(1)  | 9(1        | )     |
| C6         | 27(1)  | 22(1) | 20(1)  | 5(1)3(1)  | 7(1        | )     |
| C7         | 24(1)  | 20(1) | 19(1)  | 4(1)1(1)  | 3(1        | .)    |
| C8         | 28(1)  | 24(1) | 20(1)  | 6(1)3(1)  | 10(        | (1)   |
| C9         | 40(1)  | 30(1) | 34(1)  | 14(1) 11  | (1)        | 10(1) |
| C10        | )32(1) | 32(1) | 27(1)  | 12(1) 7(  | 1)         | 5(1)  |
| C11        | 27(1)  | 31(1) | 20(1)  | 8(1)4(1)  | 11(        | (1)   |
| C12        | 225(1) | 25(1) | 17(1)  | 7(1)3(1)  | 8(1        | .)    |
| C13        | 343(1) | 35(1) | 57(2)  | 4(1)22(1) | 2(1<br>536 | )     |

Table S9. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for **3aa'**. The anisotropic displacement factor exponent takes the form: -2p2[h2 a\*2U11 + ... + 2hka\*b\*U12]

| C1459(2) | 31(2) | 140(4) | 8(2)22(2) | 7(1)    |
|----------|-------|--------|-----------|---------|
| C1527(1) | 25(1) | 17(1)  | 4(1)4(1)  | 8(1)    |
| C1631(1) | 28(1) | 25(1)  | 6(1)4(1)  | 12(1)   |
| C1744(1) | 28(1) | 35(1)  | 9(1)9(1)  | 14(1)   |
| C1839(1) | 26(1) | 40(1)  | 6(1)3(1)  | 2(1)    |
| C1927(1) | 39(1) | 49(1)  | 11(1) 0(1 | ) 6(1)  |
| C2030(1) | 30(1) | 36(1)  | 11(1) 3(1 | ) 11(1) |
| C2138(1) | 34(1) | 20(1)  | 8(1)8(1)  | 16(1)   |
| C2230(1) | 38(1) | 25(1)  | 11(1) 7(1 | ) 11(1) |
|          |       |        |           |         |

Table S10. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for **3aa'**.

x y z U(eq)

| H2  | 536 | 3    | 203 | 4   | 372 | 1   | 38 |    |
|-----|-----|------|-----|-----|-----|-----|----|----|
| H3  | 680 | 1    | 111 | 2   | 491 | 6   | 41 |    |
| H4  | 649 | 3    | 147 | 1   | 670 | 7   | 38 |    |
| H5  | 483 | 0    | 281 | 0   | 733 | 4   | 33 |    |
| H8  | 418 | 9    | 477 | 2   | 793 | 8   | 29 |    |
| H9  | 235 | 0    | 304 | 6   | 827 | 5   | 41 |    |
| H10 | )A  | -544 | 1   | 394 | 7   | 775 | 3  | 38 |
| H10 | )B  | 200  | 368 | 4   | 886 | 8   | 38 |    |

H121567 5872 7218 27

H13110 2245 6136 58

- H14A 886 584 7383 98
- H14B -299 45 6129 98
- H162135 8377 7839 34
- H174126 10624 8352 42
- H187060 10980 8948 46
- H198004 9088 9063 49
- H206016 6842 8588 39