Electronic Supplementary Information (ESI)

Controllable Conversion of Prussian blue@yeast bio-template into 3D Cage-like Magnetic Fe₃O₄@N-doped Carbon Absorbent and its Cohesive Regeneration by Persulfate Activation

Si Chen ^{a, b}, Bo Bai ^{*, b, c, d}, Yunhua He ^{a, b}, Na Hu ^{c, d}, Honglun Wang ^{c, d}, Yourui Suo ^{c, d}

(a Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of

Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China,

^b College of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, P.R. China;

^c Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China;

^d Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810001, P.R. China)

* Corresponding author Email address: baibochina@163.com Tel: +86 29 82339052 Fax: +86 29 82339961

Contents

Fig. S1 FE-SEM images of (a-b) Fe₃O₄@C (1:0.05); (c-d) Fe₃O₄@C (1:0.22).

Fig. S2 EDS analysis of (a) Fe₃O₄@C (1:0.05) and (b) Fe₃O₄@C (1:0.22).

Fig. S3 EDS analysis of N-doped Fe₃O₄@C (1:0.11) and the corresponding mapping images.

Fig. S4 XRD patterns of PB@yeast bio-templates.

Fig. S5 Linear fits of experimental data for (a) Langmuir isotherm model; (b) Freundlich isotherm model; (c)

pseudo-first kinetic model; (d) pseudo-second kinetic model.

Fig. S6 Linear fits at different temperature for (a) Langmuir isotherm model and (b) Freundlich isotherm model.

Table S1 Comparison of maximum adsorption capacities of adsorbents for RhB in previous literatures

Table S2 Kinetic parameters for RhB adsorption at different initial concentration

Table S3 Adsorption isotherm parameters for RhB adsorption at different temperatures

Fig. S1 FE-SEM images of (a-b) Fe₃O₄@C (1:0.05) and (c-d) Fe₃O₄@C (1:0.22).

Fig. S2 EDS analysis of (a) Fe₃O₄@C (1:0.05) and (b) Fe₃O₄@C (1:0.22).

Fig. S3 EDS analysis of N-doped Fe₃O₄@C (1:0.11) and the corresponding mapping images.

Fig. S4 XRD patterns of PB@yeast bio-templates.

Fig. S5 Linear fits of experimental data for (a) Langmuir isotherm model; (b) Freundlich isotherm model; (c) pseudo-first kinetic model; (d) pseudo-second kinetic model.

Fig. S6 Linear fits at different temperature for (a) Langmuir isotherm model and (b) Freundlich isotherm model.

Adsorbent	<i>T</i> (°C)	рН	q_{\max} (mg·g ⁻¹)	References
gelatin/activated carbon composite beads(GE/AC)	60	4.0	256.41	1
Fe ₃ O ₄ /RGO	60	5.3	142.86	2
In-MOF@GO-2	25	6.0	267	3
iron-pillared bentonite (Fe-Ben)	25	5.0	98.6	4
carbonaceous adsorbent (TPC)prepared from Thespusia populinia bark	60	7.0	77.18	5
Fe ₃ O ₄ @N-C (1:0.05)	25	6.0	206.19	This study
Fe ₃ O ₄ @N-C (1:0.11)	25	6.0	257.06	This study
Fe ₃ O ₄ @N-C (1:0.22)	25	6.0	171.53	This study

Table S1 Comparison of maximum adsorption capacities of adsorbents for RhB in previous literatures

		C_0 of RhB (mg·L ⁻¹)			
Kinetic models	Parameters -	25	50	100	
	$q_{\rm e,exp} ({\rm mg} \cdot {\rm g}^{-1})$	39.06	66.28	122.61	
Dseudo-first-order	$q_{\rm e,cal}({\rm mg}{\cdot}{\rm g}{\cdot}{\rm l})$	8.65	12.20	11.93	
r seudo-misi-order	$k_1 ({\rm min}^{-1})$	0.0225	0.0262	0.0147	
	R^2	0.9643	0.9515	0.9747	
pseudo-second-order	$q_{\rm e,cal}({\rm mg}{\cdot}{\rm g}{\cdot}{\rm l})$	41.77	72.46	129.87	
	$k_2 \times 10^{-3} \text{ (g·mg}^{-1} \text{min}^{-1})$	1.4537	0.5262	0.3576	
	R^2	0.9977	0.9989	0.9993	
intra-particle diffusion	k_{1d} (mg ·g ⁻¹ min ^{-0.5})	4.6083	5.6125	10.3763	
	R^2	0.9788	0.9968	0.9841	
	k_{2d} (mg ·g ⁻¹ min ^{-0.5})	1.7468	2.3845	3.2649	
	R^2	0.9605	0.9960	0.9961	
	$k_{ m 3d}$ (mg ·g ⁻¹ min ^{-0.5})	0.0959	0.1495	0.9077	
	R^2	0.8401	0.5680	0.9273	

Table S2 Kinetic parameters for RhB adsorption at different initial concentration

	-	-		-		-		
	Langmuir Model				Freundlich Model			
T (°C)	q_{\max} (mg·g ⁻¹)	$\begin{array}{c} K_{\rm L} \\ ({\rm L} \cdot {\rm g}^{-1}) \end{array}$	R^2	$R_{ m L}$	1/ <i>n</i>	$K_{\rm F}$ (L ·g ⁻¹)	R^2	
10	206.61	0.0317	0.9988	0.14-0.39	0.4575	8.1669	0.9709	
25	257.06	0.0343	0.9965	0.13-0.37	0.4874	8.5676	0.9778	
40	262.46	0.0437	0.9954	0.10-0.30	0.4564	9.2963	0.9772	
55	268.10	0.0764	0.9965	0.06-0.21	0.4101	10.265	0.9825	

Table S3 Adsorption isotherm parameters for RhB adsorption at different temperatures

References

- 1 F. Hayeeye, M. Sattar, W. Chinpa and O. Sirichote, Colloid Surface A, 2017, 513, 259-266.
- 2 Y. Qin, M. Long, B. Tan and B. Zhou, *Nano-Micro Lett.*, 2014, 6, 125-135.
- 3 C. Yang, S. Wu, J. Cheng and Y. Chen, J. Alloy Compd., 2016,687,804-812.
- 4 M.F. Hou, C.X. Ma, W.D. Zhang, X.Y. Tang, Y.N. Fan and H.F. Wan, J. Hazard. Mater. 2011,186,1118-1123.
- 5 M. Hema and S. Arivoli, Indian J. Chem. Technol. 2009, 16, 38-45.