Supporting Information

Vinylene and Benzo[c][1,2,5]thiadiazole: Effect of the π -Spacer Unit on the Properties of Bis(2-oxoindolin-3-ylidene)benzodifuran-dione Containing Polymers for n-Channel Organic Field-Effect Transistors

Thu Trang Do,^{a#} Basanagouda B Patil, ^{a#} Samarendra P. Singh,^b Soniya D. Yambem,^a Krishna Feron,^{c,d} Kostya (Ken) Ostrikov, ^a John M. Bell,^a Prashant Sonar^a*

^aSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD-4001, Australia.

^b Department of Physics, School of Natural Sciences, Shiv Nadar University (SNU), Gautam Buddha Nagar, Uttar Pradesh, India-201307

°CSIRO Energy Centre, NSW-2304, Australia.

^dCentre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.

[#]Both authors contributed equally to this work

Corresponding email: <u>sonar.prashant@qut.edu.au</u>

KEYWORDS: Bis(2-oxoindolin-3-ylidene)-benzodifuran-dione, (*E*)-2-(2-(thiophen-2-yl)vinyl)thiophene (TVT), dithienylbenzothiadiazole (TBT), D-A polymers, n-channel Organic Field-Effect Transistors (OFETs).

Contents

- 1. Figure S1. ¹H NMR (600 MHz, CDCl₃) spectrum of 1
- 2. Figure S2. ¹H NMR (600 MHz, CDCl₃) spectrum of **3**
- 3. Figure S3. ¹H NMR (600 MHz, CDCl₃) spectrum of 4
- 4. Figure S4. ¹H NMR (600 MHz, CDCl₃) spectrum of **BIBDF**
- 5. Figure S5. ¹³C NMR (150 MHz, CDCl₃) spectrum of **BIBDF**
- 6. Figure S6. HRMS spectrum of BIBDF
- 7. Figure S7. Gel permeation chromatogram of polymer **PIBDF-TVT** in chloroform at 30°C.
- 8. Figure S8. Gel permeation chromatogram of polymer PIBDF-TBT in chloroform at 30°C.
- 9. Figure S9. UV-Vis absorption spectra of **PBIBDF-TVT** and **PBIBDF-TBT** thin films at RT and 180 °C.
- 10. Figure S10. Powder X-ray diffraction (XRD) Patterns at RT and after annealing at 180°C for **PBIBDF-TVT** and **PBIBBDF-TBT** polymers.
- 11. Figure S11. XPS survey spectrum of PBIBDF-TVT and PBIBDF-TBT
- 12. Figure S12. Polymers are aggregated in the mixture of chlorobenzene and DCM (7:3 v/v)

Figure S2. ¹H NMR (600 MHz, CDCl₃) spectrum of **3**

Figure S3. ¹H NMR (600 MHz, CDCl₃) spectrum of 4

Figure S4. ¹H NMR (600 MHz, CDCl₃) spectrum of **BIBDF**

Figure S5. ¹³C NMR (150 MHz, CDCl₃) spectrum of **BIBDF**

Figure S7. Gel permeation chromatogram of polymer PIBDF-TVT in chloroform at 30°C.

Figure S8. Gel permeation chromatogram of polymer PIBDF-TBT in chloroform at 30°C.

Figure S9. UV-Vis absorption spectra of **PBIBDF-TVT** and **PBIBDF-TBT** thin films at RT and 180 °C.

Figure S10. Powder X-ray diffraction (XRD) Patterns at RT and after annealing at 180°C for **PBIBDF-TVT** and **PBIBBDF-TBT** polymers.

Figure S11. XPS survey spectrum of **PBIBDF-TVT** and **PBIBDF-TBT**

Figure S12. Polymers are aggregated in the mixture of chlorobenzene and DCM (7:3 v/v) **PBIBDF-TVT** (left) and **PBIBDF-TBT** (right)