Nanosized mesoporous phosphated tin oxide as efficient solid acid catalyst

S. M. Hassan^a, and M. A. Mannaa^{a,b}, Amr Awad Ibrahim^{a,c*}

^a Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt

^b Chemistry Department, Faculty of Education and Science, Amran University, Sa'dah Yemen.

^C Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, United States

a,c* Corresponding authors., <u>amr_awad@mans.edu.eg</u>, <u>aamohammed@vcu.edu</u>

Supporting information

Fig. 1S: TGA curves of (a) 8%, (b) 25% (c) 45% PO₄³⁻/m-SnO₂ samples.

Fig.2S: (A)Low angle XRD pattern of the mesoporous (a) m-SnO₂ (550°C) and the samples PO_4^{3-} /SnO₂ (400°C) at (a) m-SnO₂ (b) 3% (c) 25% (d) 35%, (B) Low angle XRD pattern of the sample $3PO_4^{3-}/SnO_2$ at different temperatures (a) 400°C (b) 550°C (c) 650°C.

Fig.3S: Pore size distributions of 25% PO_4^{3-}/m -SnO₂ samples at (a) 400°; (b) 450°; (c) 550°; (d) 650°C

Figure 4S: Potentiometric titration of n-butylamine in acetonitrile for $PO_4^{3-}/m-SnO_2$ catalysts calcined at 400°C.

Figure 5S: NH₃-TPD profiles of the m-SnO₂, 3%PO₄³⁻/m-SnO₂, 25%PO₄³⁻/m-SnO₂ and 45%PO₄³⁻/m-SnO₂ calcined at 400 ^oC

Figure 6S: Effect of PO_4^{3-} content wt.% /mSnO₂ calcined at 400 0 C, on the ratio of Brönsted acid sites to Lewis acid sites and % hydroquinone diacetate.

Figure 7S: (A) and (B) TEM images of 25% $PO_4^{3-}/mSnO_2$ calcined at 400 ^oC after 3rd run (C) FT-IR spectra of pyridine adsorbed on 25% $PO_4^{3-}/mSnO_2$ calcined at 400 ^oC after 3rd run

Table S1: comparison between solid acid catalyst and homogenous acid catalyst using 0.022 mmol of acid.

sample	Conversion %
25% PO ₄ ³⁻ /mSnO ₂	93.2
H ₂ SO ₄	82.4
HCl	64.7

mmol of Acid for the $25\%PO_4^{3-}/mSnO_2$ has been calculated from the total number of acid sites. For the H_2SO_4 and HCl the same amount of acid concentration has been used