Supplementary Information

Hierarchical structured Mn₂O₃ nanomaterials with excellent electrochemical properties for lithium ion batteries

Su Meng^{a,c}, Wenchao Yan^{a,b*}, Xiaodi Ma^a, Deye Sun^a, Yongcheng Jin^{a*},

Kuang Hed*

^aCenter of Materials Science and Optoelectronics Engineering, University of

Chinese Academy of Sciences, Beijing 100049, China. E-mail:

jinyc@qibebt.ac.cn

^bSchool of Materials Science & Engineering, Linyi university, Linyi 276000, P. R. China

^cUniversity of Chinese Academy of Science, 19A Yuquanlu Road, Bejing 100049, P. R. China

^d Institute of metal research, Chinese Academy of Sciences, Wenhua Road 72, Shenhe District, Shenyang 110016, China.

Fig.S1 TG curve of leave-template adsorbed Mn(CH₃COO)₂

Fig. S2 TEM images of G-Mn₂O₃ (a,b), P-Mn₂O₃ (c,d) and T-Mn₂O₃ (e,f).

Fig.S3 XPS spectra of $G-Mn_2O_3$ material at different discharge state (a) pristine material, (b) discharge state at 0.25 V and (c) discharge state at 0.01 V.

Fig.S4 SEM images of the powder-Mn₂O₃.

Fig.S5 (a) Cycle performance and (b) rate capability of powder -Mn₂O_{3.}

Fig.S6 Electrochemical impedance spectra test were performed after cycling at 0.3 C in 300th cycle. The OCV of all the cells was 0.01 V (Discharge period).

Morphology	Cpacity (mAh g ⁻¹)/cycles/ current density (mA g ⁻¹)	Rate capability(mAh g ⁻¹)			References
		1000	2000	3000	
Hierarchically microsphere	920/100/200		528.4		[1]
Porous nanoplates	813.7/50/100		448.4		[2]
nanowires	502.3/100/100	220			[3]
Hierarchically porous single crystals	845/50/100	410			[4]
porous octahedra	755/100/200	509	411		[5]
Hollow core-shell microspheres	620/500/1000	343	237		[6]
Hierarchically porous structure	1274.6/300/300	503.1	419.5	381.5	Our work

Table S1 Comparison of electrochemical performance of Mn_2O_3 materials prepared in this study with those reported in the literatures.

Cycle number	R _e	R _{ct}
1 st	7.0	582.6
100 th	7.8	286.2
200 th	12.5	58.5
300 th	9.2	46.8

Table S2 Related resistance parameters of $G-Mn_2O_3$ electrode in the 1st, 100th, 200th, and 300th cycles.

References

[1] S. Shi, S. Deng, M. Zhang, M. Zhao and G. Yang, *Electrochimica Acta* **2017**, *224*, 285-294.

[2] Y. J. Zhang, Y. Yan, X. Y. Wang, G. Li, D. R. Deng, L. Jiang, C. Y. Shu and C. R. Wang, *Chemistry-a European Journal* **2014**, *20*, 6126-6130.

[3] Y. H. Wang, Y. H. Wang, D. S. Jia, Z. Peng, Y. Y. Xia and G. F. Zheng, *Nano Letters* **2014**, *14*, 1080-1084.

[4] S. Z. Huang, J. Jin, Y. Cai, Y. Li, Z. Deng, J. Y. Zeng, J. Liu, C. Wang, T. Hasan

and B. L. Su, Scientific Reports 2015, 5.

[5] B. Zhang, S. Hao, D. Xiao, J. Wu and Y. Huang, *Materials & Design* **2016**, *98*, 319-323.

[6] C. Zhang, C. Guo, Y. Wei and L. Hou, *Physical Chemistry Chemical Physics* **2016**, *18*, 4739-4744.