Ultrafine $\mathbf{N i M o O}_{\mathbf{x}}$ nanoparticles confined in mesoporous carbon for the
reduction of nitroarenes: Effect of the composition and accessibility of the active sites
Shuna Li, Yipin Lv, Guolong Song, Cuncheng Li, Daowei Gao* and
Guozhu Chen*

School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.

[^0]Table S1. The XPS parameters of Ni 2 p and Mo 3d over different catalysts.

Area ${ }^{\text {d }}$ (\%)		Binding energy ${ }^{\text {b }}$ (eV)			Sample	Binding energy ${ }^{\text {a }}$ (eV)			Area ${ }^{\text {c (\%) }}$	
Ni^{2+}	Ni^{0}	$\mathrm{Ni}(\mathrm{OH})_{2}$	NiO	Ni^{0}		Mo^{0}	Mo^{++}	Mo^{6+}	Mo^{0}	$\mathrm{MoO}_{\mathrm{x}}$
96.4	3.6	856.2	855	853.0	$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	230.7	232.4	235.9	22.0	88
82.2	17.8	856.1	854.4	852.9	$\begin{gathered} \mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}- \\ 450 \end{gathered}$	230.6	232.3	235.5	33.6	66.4
67.5	32.5	856.4	854.5	852.7	$\begin{gathered} \mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}- \\ 750 \end{gathered}$	230.6	232.3	235.7	36.3	63.7

${ }^{\text {a }}$ The binding energy of $\mathrm{Mo} 3 \mathrm{~d}_{3 / 2}$.
${ }^{\mathrm{b}}$ The binding energy of Ni $2 \mathrm{p}_{5 / 2}$.
${ }^{\mathrm{c}}$ The difference of valence of Mo species. Area $=\mathrm{Mo}^{\mathrm{x}} /\left(\mathrm{Mo}^{0}+\mathrm{Mo}^{4+}+\mathrm{Mo}^{6+}\right)$.
${ }^{\mathrm{d}}$ The difference of valence of Ni species. Area $=\mathrm{Ni}^{\mathrm{x}} /\left(\mathrm{Ni}^{0}+\mathrm{Ni}^{2+}\right)$.

Table S2. The kinetic constants and TOF of $\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$ at different concentration of NaBH_{4}.

Samples	Catalyst amount (mg)	Concentration of NaBH_{4} $\left({\left.\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)}\right.$	Concentration of $4-\mathrm{NP}$ $\left(\mathrm{mol} \cdot \mathrm{L}^{-1}\right)$	$\mathrm{Time}^{\mathrm{a}}$ (min)	k $\left(\mathrm{min}^{-1}\right)$	K $\left(\mathrm{min}^{-1} \cdot \mathrm{~g}^{-1}\right)$	$\mathrm{TOF}^{\mathrm{b}} \times 10^{3}$ $\left(\mathrm{~s}^{-1}\right)$
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.005	0.012	8.5	0.10	200	42.6
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.01	0.012	6.0	0.19	380	60.4
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	0.012	2.0	0.48	960	175.8
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.03	0.012	2.3	0.41	820	157.5
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.04	0.012	1.9	0.49	980	190.7

${ }^{a}$ Calculated at 50% of the conversion.
${ }^{\mathrm{b}}$ Calculated on the basis of total catalyst and conversion rate of 50%.

Table S3. The kinetic constants and TOF of $\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$ under different amount of catalyst in the reduction reaction.

Samples	Catalyst amount (mg)	Concentration of NaBH_{4} ($\mathrm{mol} \cdot \mathrm{L}^{-1}$)	$\begin{gathered} \text { Concentration } \\ \text { of } \\ 4-\mathrm{NP} \\ \left(\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right) \\ \hline \end{gathered}$	Time \qquad (min)	$\begin{gathered} \mathrm{k} \\ \left(\min ^{-1}\right) \end{gathered}$	$\underset{\left(\mathrm{min}^{-1} \cdot \mathrm{~g}^{-1}\right)}{\mathrm{K}}$	$\begin{gathered} \mathrm{TOF}^{\mathrm{b}} \times 10^{3} \\ \left(\mathrm{~s}^{-1}\right) \end{gathered}$
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.0625	0.02	0.012	12.3	0.07	1120	235.6
NiMoO ${ }_{\text {x }} / \mathrm{MC}-\mathrm{PL}$	0.125	0.02	0.012	7.8	0.12	968	185.8
$\mathrm{NiMoO}_{\mathbf{x}} / \mathrm{MC}-\mathrm{PL}$	0.25	0.02	0.012	4.5	0.27	1080	161
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	0.012	2.0	0.48	960	175.8
$\mathrm{NiMoO}_{x} / \mathrm{MC}-\mathrm{PL}$	1.0	0.02	0.012	1.3	1.06	1060	125.5

${ }^{a}$ Calculated at 50% of the conversion.
${ }^{\mathrm{b}}$ Calculated on the basis of total catalyst and conversion rate of 50%.

Table S4. The kinetic constants and TOF of $\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$ under different amount of 4-NP.

Samples	Catalyst amount (mg)	Concentration of NaBH_{4} $\left(\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$	Amount of $4-\mathrm{NP}$ $(\mu \mathrm{L})$	$\mathrm{Time}^{\mathrm{a}}$ (min)	k $\left(\mathrm{min}^{-1}\right)$	K $\left(\mathrm{min}^{-1} \cdot \mathrm{~g}^{-1}\right.$ $)$	$\mathrm{TOF}^{\mathrm{b}} \times 10^{3}$ $\left(\mathrm{~s}^{-1}\right)$
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	10	1.1	0.77	1540	329.4
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	15	2.4	0.67	1340	150.9
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	20	1.8	0.52	1040	201.3
$\mathrm{NiMoO}_{\mathrm{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	25	2.9	0.46	920	124.9
$\mathrm{NiMoO}_{\mathbf{x}} / \mathrm{MC}-\mathrm{PL}$	0.5	0.02	30	4.3	0.25	500	84.0

${ }^{a}$ Calculated at 50% of the conversion.
${ }^{\mathrm{b}}$ Calculated on the basis of total catalyst and conversion rate of 50%.

Fig. S1. XRD patterns of various morphologies of $\mathrm{NiMoO}_{x} /$ SBA-15 (a, b) in the small-angle and wide-angle.

Fig. S2. The EDS analysis of NiMoS/MC-PL.

Fig. S3. The reduction of 4-NP recorded every 1.5 min with different concentration of the $\mathrm{NaBH}_{4}(\mathrm{a}-\mathrm{e})$; Time dependent conversion of 4-NP over the catalysts (f); The relationship between the A_{t} / A_{0} and reaction time (g); Plots of $\ln \left(C_{t} / \mathrm{C}_{0}\right)$ versus reaction time at different concentration of NaBH_{4} for reduction $4-\mathrm{NP}$ (h).

Fig. S4. The reduction of 4-NP recorded every 1.5 min with different amount of catalyst (a-e); Plots of conversion versus time over the different amount of catalyst (f); The relationship between the $\ln \left(\mathrm{C}_{\mathrm{t}} / \mathrm{C}_{0}\right)$ and reaction time for reduction 4-NP (g); The correlation between the k and amount of catalyst (h).

Fig. S5. The reduction of 4-NP recorded every 1.08 min with different amount of 4-

NP (a-e); Plots of conversion versus time over the different amount 4-NP (f); The relationship between the $\ln \left(\mathrm{C}_{\mathrm{t}} / \mathrm{C}_{0}\right)$ and reaction time (g); The correlation between the k and amount of 4-NP (h).

[^0]: *Corresponding author. Tel: +86 0531-82769181.
 Email address: chm_gaodw@ujn.edu.cn (Daowei Gao), chm_chengz@ujn.edu.cn (Guozhu Chen).

