Enhanced cycling performance of nanostructure LiFePO₄/C composites with *in-situ* 3D conductive networks for high power Li-ion batteries

Chunsong Zhao^a, Lu-Ning Wang^{a, b, *}, Jitao Chen^{c*}, Min Gao^d

^a Beijing Advanced Innovation Center for Materials Genome Engineering, School of

Materials Science and Engineering, University of Science and Technology Beijing,

Beijing 100083, China

^b State Key Laboratory For Advanced Metals and Materials, Beijing 100083, China

^c College of Chemistry and Molecular Engineering, Peking University, Beijing 100871,

China

^d China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China

*Corresponding author.

E-mail: luning.wang@ustb.edu.cn (L.W.), chenjitao@pku.edu.cn (C.J.)

Tel: 86-1062334488; Fax: 86-1062332506. The SEM and TEM images of LFP-S and LFP/C-S were measure in Fig.S1

Fig.S1. SEM images for (a) LFP-S and (b) LFP/C-S, TEM images for (c, d) LFP/C-S

The Li⁺ diffusion coefficient at open circuit state could be calculated from the slanted lines in the Warburg region by Eq. 1: [1]

$$D_{Li} = R^2 T^2 / 2A \ \hat{n} \ \hat{F} \ C_0^4 \sigma^2$$
(1)

where D_{Li} is the diffusion coefficient in LiFePO₄ (cm² s⁻¹), *R* is the gas constant (8.31 J mol⁻¹ K⁻¹), *T* is the absolute temperature (298 K), *A* is the surface area of active material, *n* is the number of electrons transferred per molecule during the electrochemical reaction, *F* is the Faraday constant (96485 C mol⁻¹), C_0 is the molar concentration of lithium ion in LiFePO₄ (1.1×10⁻² mol cm⁻³ here), and σ is the Warburg factor associated with Z_{re} by Equation 2: [1]

$$Z_{re} = K + \sigma \omega^{-1/2} \tag{2}$$

The Warburg factor can be obtained from the slope between Zre and the $\omega^{-1/2}$ where D_{Li} is the Li⁺ diffusion coefficient in LFP (cm² · s⁻¹), σ is the Warburg factor associated with Z_{Re} ($Z_{Re} \propto \sigma \omega^{-1/2}$). After linear fitting the relation plot between Z_{Re} and the reciprocal square root of the angular frequency ω , as shown in Figure S2, the σ of LFP/C-F and LFP/C-S were calculated to be 14.276 and 24.01 Ω ·s^{-1/2}, respectively.

Fig.S2. the relationship between Z_{re} and the $\omega^{-1/2}$ of LiFePO₄/C

composites

Reference

[1] B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang,
X. S.Zhao, *Nanoscale* 2014, *6*, 986.