Supporting materials

Molybdenum imidazole citrate and bipyridine homocitrate in different oxidation states – Balance between coordinated α -hydroxy and α -alkoxy groups

Si-Yuan Wang, Zhao-Hui Zhou*

State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, zhzhou@xmu.edu.cn, Tel: + 86-592-2184531; Fax: + 86-592-2183047

Figure and Table Options

Figure S2. 2D layered structure of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1). Figure S3. 2D layered structure of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) viewed along *a* axis.

Figure S4. 2D layered structure of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S5. The 3D supramolecular are linked through hydrogen bonds in $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) viewed along *a* axis.

Figure S6. The 3D supramolecular are linked through hydrogen bonds in $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) viewed along *b* axis.

Figure S7. The 3D supramolecular are linked through hydrogen bonds in $(\text{Him})_2 \{\text{Mo3}^{IV}\text{SO}_3(\text{im})_3[\text{Mo}^{VI}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}(2).$

Figure S8. 3D water layers in $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}(2).$

Figure S9. 2D layered structure of *trans*- $[(Mo^VO)_2O(H_2homocit)_2(bpy)_2] 4H_2O(3)$.

Figure S10. 2D layered structure of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S11. 2D water layers in $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S12. ¹H NMR spectrum of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1).

Figure S13. ¹H NMR spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S14. ¹³C NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S15. ¹H NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S16. ¹³C NMR spectrum of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) after three months.

Figure S17. ¹H NMR spectrum of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) after three months.

Figure S18. ¹³C NMR spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2) after three months.

Figure S19. ¹H NMR spectrum of $(\text{Him})_2 \{\text{Mo}_3^{IV}\text{SO}_3(\text{im})_3[\text{Mo}^{VI}\text{O}_3(\text{Hcit})]_2\}$ ·im·6H₂O (2) after three months.

Figure S20. ¹³C NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4) after three months.

Figure S21. ¹H NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4) after three months.

Figure S22. XPS spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S23. Plots of the experimental temperature dependence of χ_M^{-1} and $\chi_M T$ for $(\text{Him})_2 \{\text{Mo3}^{IV}\text{SO}_3(\text{im})_3[\text{Mo}^{VI}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S24. Plots of the experimental temperature dependence of χ_M^{-1} and $\chi_M T$ for *trans*-[(Mo^VO)₂O(H₂homocit)₂(bpy)₂] 4H₂O (**3**).

Figure S25. IR spectra of $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot 3im\cdot 4H_2O$ (1) and $(Him)_2\{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot im\cdot 6H_2O$ (2).

Figure S26. IR spectrum of trans-[(Mo^VO)₂O(H₂homocit)₂(bpy)₂] 4H₂O (3).

Figure S27. IR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S28. UV-vis spectra of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) and (Him)₂ $\{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·im·6H₂O (2).

Figure S29. UV-vis spectrum of *trans*-[(Mo^VO)₂O(H₂homocit)₂(bpy)₂] 4H₂O (3).

Figure S30. Cyclic voltammogram of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) versus an Hg/Hg₂Cl₂ reference electrode in 1 mol/L Na₂SO₄ at a scan rate of 100 mV s⁻¹.

FigureS31.Cyclicvoltammogramof $(Him)_2 \{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot im \cdot 6H_2O$ (2)versus an Hg/Hg_2Cl_2 referenceelectrode in 1 mol/L Na_2SO_4 at a scan rate of 100 mV s⁻¹.

Figure S32. Cyclic voltammogram of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)] \cdot H_2O$ (4) versus an Hg/Hg₂Cl₂ reference electrode in 1 mol/L Na₂SO₄ at a scan rate of 100 mV s⁻¹.

Figure S33. Mass spectrum of $[Mo^{IV}O_2(Hcit)]^{1-}$ in $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)] \cdot H_2O$ (**3**). **Table S1.** Selected bond distances (Å) and angles (°) within the water layers in $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot 3im \cdot 4H_2O$ (**1**).

Table S2. Selected bond distances (Å) and angles (°) within the water layers in $(\text{Him})_2 \{\text{Mo}_3^{IV}\text{SO}_3(\text{im})_3[\text{Mo}^{VI}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O} (2).$

Table S3. Selected bond distances (Å) and angles (°) within the water layers in $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

 $(Him)_{2} \{Mo_{3}^{IV}SO_{3}(im)_{3}[Mo^{VI}O_{3}(Hcit)]_{2}\} \cdot im \cdot 6H_{2}O$ (2),

 $trans - [(Mo^{V}O)_{2}O(H_{2}homocit)_{2}(bpy)_{2}] 4H_{2}O (3), [(Mo^{V}O)_{2}O(H_{2}cit)_{2}(bpy)_{2}] 4H_{2}O (5),^{1} [Mo_{3}^{IV}SO_{3}(glyc)_{2}(im)_{5}] \cdot im \cdot H_{2}O (13),^{2} Na_{2}[Mo_{3}^{IV}SO_{3}(R, S-lact)_{3}(im)_{3}] \cdot 10H_{2}O (14),^{2} [Mo_{3}^{IV}S_{4}(PPh_{3})_{3}(Hlact)_{2}(lact)] (15),^{3} Mo_{3}^{V/VI}O_{8}(im)_{4} im H_{2}O (18),^{4} Mo_{3}^{V/VI}O_{8}(im)_{4} H_{2}O (19),^{4} Mo_{2}^{VI}O_{6}(im)_{4} (20),^{5} cis - Na_{2}[Mo_{2}^{V}O_{4}(ox)_{2}(im)_{2}] 4.5H_{2}O (21),^{4} cis - K_{2}[Mo_{2}^{V}O_{4}(ox)_{2}(im)_{2}] 3H_{2}O (22),^{4} K(Him)[Mo_{3}^{IV}O_{4}(ox)_{3}(im)_{3}] 3H_{2}O (23),^{4} (4-MePyH)(H_{3}O)[Mo_{3}^{IV}O_{4}(C_{2}O_{4})_{3}(4-MePy)_{3}] H_{2}O (24),^{6}$

 $(MeNC_6H_7)(H_3O)[Mo_3^{IV}O_4(C_2O_4)_3(4-MePy)_3] \cdot 1/2(4-MePy)$ $(25),^{6}$ Na₂[Mo₃^{IV}O₄((O₂CCH₂)₂NCH₃)₃] 7H₂O (**26**),⁷ [Mo₃^{IV}O(OH)₃(Hnta)₃] Cl 3H₂O (**27**),⁸ (**28**),⁹ $(PyH)_4[Mo_4^VO_8Cl_4(glyc)_2]$ 2EtOH $[Mo_4^V O_8(glyc)_2 Py_4]$ $(29)^{9}$ $Na_4[Mo_6^{IV}O_8(EDTA)_3]$ 14H₂O (**30**),¹⁰ $[Mo_6^{IV}O_{10}(bpy)_4(Hnta)_2] \cdot 10H_2O$ **(31**),¹¹ $[Mo_6^{IV}O_{10}(R,S-lact)_2(im)_{10}]$ $16H_2O$ (**32**),² $[Mo_3^{IV}SO_3(acac)_3(py)_3]$ PF₆ $2C_6H_5CH_3$ $(33)^{12}$ and $[Mo_3^{IV}S_4(Clqn)_3(H_2O)_3]^+$ $(34)^{13}$ (HClqn = C₉H₆ClNO). **Table S5.** ¹³C NMR data of $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1), $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2) and $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)] \cdot H_2O(4).$ Crystallographic Table **S6.** data refinements and structural for $K_{2}{Mo_{3}^{IV}O_{4}(im)_{3}[Mo^{VI}O_{3}(Hcit)]_{2}}\cdot 3im\cdot 4H_{2}O$ (1), $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2),trans-[$(Mo^VO)_2O(H_2homocit)_2(bpy)_2$] 4H₂O (3) and (Et₄N)[Mo^{VI}O₂Cl(H₂cit)]·H₂O (4). Table (Å) **S7.** Selected bond distances and angles () for $K_{2}\{Mo_{3}^{IV}O_{4}(im)_{3}[Mo^{VI}O_{3}(Hcit)]_{2}\}$ ·3im·4H₂O (1). Table Selected bond distances (Å) **S8.** and angles () for $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}(2).$ Table **S9**. Selected bond distances (Å) for and angles () *trans*-[($Mo^{V}O$)₂O(H_2 homocit)₂(bpy)₂] 4H₂O (**3**).

FigureS1.Perspectiveviewoftheanionstructureof $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1).

Figure S2. 2D layered structure of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot 3im \cdot 4H_2O(1)$.

Figure S3. 2D layered structure of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot 3im \cdot 4H_2O$ (1) viewed along *a* axis.

Figure S4. 2D layered structure of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S5. The 3D supramolecular are linked through hydrogen bonds in $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot 3im\cdot 4H_2O(1)$ viewed along *a* axis.

Figure S6. The 3D supramolecular are linked through hydrogen bonds in $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot 3im\cdot 4H_2O(1)$ viewed along *b* axis.

Figure S7. The 3D supramolecular are linked through hydrogen bonds in $(\text{Him})_2\{\text{Mo}_3^{IV}\text{SO}_3(\text{im})_3[\text{Mo}^{VI}\text{O}_3(\text{Hcit})]_2\}$ ·im·6H₂O (2).

Figure S8. 3D water layers in $(Him)_2 \{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot im \cdot 6H_2O$ (2).

Figure S9. 2D layered structure of *trans*- $[(Mo^VO)_2O(H_2homocit)_2(bpy)_2] 4H_2O$ (3).

Figure S10. 2D layered structure of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S11. 2D water layers in $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S12. ¹H NMR spectrum of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot 3im \cdot 4H_2O(1)$.

Figure S13. ¹H NMR spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S15. ¹H NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S16. ¹³C NMR spectrum of $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) after three months.

Figure S17. ¹H NMR spectrum of $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) after three months.

Figure S18. ¹³C NMR spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2) after three months.

Figure S19. ¹H NMR spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2) after three months.

Figure S20. ¹³C NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4) after three months.

Figure S21. ¹H NMR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4) after three months.

Figure S22. XPS spectrum of $(\text{Him})_2 \{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\}$ ·im·6H₂O (2).

Figure S23. Plots of the experimental temperature dependence of χ_M^{-1} and $\chi_M T$ for $(\text{Him})_2\{\text{Mo}_3^{\text{IV}}\text{SO}_3(\text{im})_3[\text{Mo}^{\text{VI}}\text{O}_3(\text{Hcit})]_2\} \cdot \text{im} \cdot 6\text{H}_2\text{O}$ (2).

Figure S24. Plots of the experimental temperature dependence of χ_M^{-1} and $\chi_M T$ for *trans*-[(Mo^VO)₂O(H₂homocit)₂(bpy)₂] 4H₂O (**3**).

Figure S25. IR spectra of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot 3im \cdot 4H_2O$ (1) and $(Him)_2 \{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot im \cdot 6H_2O$ (2).

Figure S26. IR spectrum of *trans*- $[(Mo^VO)_2O(H_2homocit)_2(bpy)_2] 4H_2O(3)$.

Figure S27. IR spectrum of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Figure S28. UV-vis spectra of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot 3im \cdot 4H_2O$ (1) and $(Him)_2 \{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot im \cdot 6H_2O$ (2).

Figure S29. UV-vis spectrum of *trans*- $[(Mo^VO)_2O(H_2homocit)_2(bpy)_2] 4H_2O(3)$.

Figure S30. Cyclic voltammogram of $K_2 \{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1) versus an Hg/Hg₂Cl₂ reference electrode in 1 mol/L Na₂SO₄ at a scan rate of 100 mV s⁻¹.

FigureS31.Cyclicvoltammogramof $(Him)_2 \{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot im \cdot 6H_2O$ (2)versus an Hg/Hg_2Cl_2 referenceelectrode in 1 mol/L Na_2SO_4 at a scan rate of 100 mV s⁻¹.

Figure S32. Cyclic voltammogram of $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4) versus an Hg/Hg₂Cl₂ reference electrode in 1 mol/L Na₂SO₄ at a scan rate of 100 mV s⁻¹.

D–H···A	D-H(Å)	H····A(Å)	D…A(Å)	D–H…A(°)
O_{1w} – $H \cdots O_{6d}$	0.79	2.26	3.01(1)	161
O_{2w} – $H \cdots O_{5d}$	0.91	2.29	2.94(1)	128
O_{2w} – $H \cdots O_{5d}$	0.93	2.56	2.94(1)	105
O_{3w} -H··O _{12e}	0.85	2.41	3.20(1)	154
O_{3w} – $H \cdots O_{13e}$	0.85	2.23	2.87(1)	131
O_{3w} – $H \cdots O_{2wa}$	0.87	1.25	1.89(2)	126
O_{4wB} – $H \cdots O_{4wBf}$	0.67	1.82	2.18(1)	114
O_{4wB} – $H \cdots O_{4wBf}$	0.80	1.66	2.177(1)	121
N_4 – $H \cdots O_{10a}$	0.88	2.06	2.898(7)	158
N_6 – $H \cdots O_{3b}$	0.88	2.03	2.874(8)	160
N_8 – $H \cdots O_5$	0.88	1.90	2.732(9)	157
N_{10} – $H \cdots O_{22c}$	0.86	1.98	2.818(8)	164

Table S1. Selected bond distances (Å) and angles (°) within the water layers in $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}$ ·3im·4H₂O (1).

Symmetry codes: (a) -1 + x, y, z; (b) x, 1 + y, z; (c) 1 - x, 1 - y, 2 - z; (d) 1 - x, 1 - y, 1 - z; (e) 1 - x, 2 - y, 1 - z; (f) 1 - x, 2 - y, 2 - z

D–H····A	D-H(Å)	H····A(Å)	D…A(Å)	D–H····A(°)
$O_{1w}\!\!-\!\!H\cdots O_{2w}$	0.85	1.95	2.737(8)	154
O_{1w} – $H \cdots O_{17a}$	0.82	2.03	2.822(6)	164
O_{2w} – $H \cdots O_{3b}$	0.88	1.88	2.724(9)	159
O_{2w} – $H \cdots O_{6c}$	0.82	2.21	2.918(8)	145
O_{3w} – $H \cdots O_{9d}$	0.97	1.76	2.701(8)	161
O_{3w} – $H \cdots O_{4we}$	0.87	2.38	2.969(10)	125
$O_{4w}\!\!-\!\!H\cdots O_{3f}$	0.83	2.48	2.880(6)	111
O_{4w} – $H \cdots O_{15g}$	0.84	1.93	2.767(7)	173
O_{5wA} – $H \cdots O_9$	0.85	1.93	2.719(10)	154
O_{5wA} – $H \cdots O_{18e}$	0.85	2.26	2.702(10)	112
O_{6w} – $H \cdots N_{12}$	0.85	1.91	2.725(11)	162
O_{6w} – $H \cdots O_{15h}$	0.85	2.05	2.530(8)	115
N_2 – $H \cdots O_{12e}$	0.86	1.93	2.772(7)	166
$N_4 \!\!-\!\! H \cdots O_{2w}$	0.86	2.55	3.116(10)	125
N_4 – $H \cdots O_{16c}$	0.86	2.27	3.019(8)	146
N_4 – $H \cdots O_{17c}$	0.86	2.52	3.033(8)	119
N_6 – $H \cdots O_{21d}$	0.86	2.09	2.934(7)	168
N_7 – $H \cdots O_{23}$	0.85	1.93	2.766(6)	164
$N_8\!\!-\!\!H\cdots O_{1w}$	0.86	1.86	2.720(8)	176
N_9 – $H \cdots O_4$	0.85	1.87	2.719(6)	174
N_{10} -H··O ₁₀ :	0.89	2.15	2.928(9)	146

Table S2. Selected bond distances (Å) and angles (°) within the water layers in $(\text{Him})_2\{\text{Mo}_3^{IV}\text{SO}_3(\text{im})_3[\text{Mo}^{VI}\text{O}_3(\text{Hcit})]_2\}\cdot\text{im}\cdot6\text{H}_2\text{O}(2).$

Symmetry codes: (a) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (b) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (c) 1 - x, 1 - y, 1 - z; (d) x, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (e) x, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (f) x, y, -1 + z; (g) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (h) 2 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (i) 2 - x, $\frac{1}{2} - y$, 1 - z; (j) 2 - x, $\frac{1}{2} - z$; (j) 2 - x, $\frac{1}{2} - z$; (k) 2 - z; (k) 2 -

D–H ···A	D-H(Å)	H····A(Å)	D…A(Å)	D–H····A(%
O_{1w} – $H \cdots O_{2a}$	0.85	2.16	2.981(6)	164
O_{1w} – $H \cdots O_{6a}$	0.85	2.56	2.912(6)	106
O_{1w} – $H \cdots O_{7b}$	0.85	1.97	2.823(6)	178
$O_5 - H \cdots O_{3c}$	0.82	1.78	2.594(6)	172
O_7 – $H \cdots O_{1w}$	0.82	1.77	2.585(6)	173

Table S3. Selected bond distances (Å) and angles (\degree) within the water layers in $(Et_4N)[Mo^{VI}O_2Cl(H_2cit)]$ ·H₂O (4).

Symmetry codes: (a) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z; (b) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z; (c) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z

Table **S4**. Comparisons of selected bond distances (Å) for $K_{2}{Mo_{3}^{IV}O_{4}(im)_{3}[Mo^{VI}O_{3}(Hcit)]_{2}}\cdot 3im\cdot 4H_{2}O$ (1), $(\text{Him})_{2}\{\text{Mo}_{3}^{\text{IV}}\text{SO}_{3}(\text{im})_{3}[\text{Mo}^{\text{VI}}\text{O}_{3}(\text{Hcit})]_{2}\}\cdot\text{im}\cdot6\text{H}_{2}\text{O}$ (2), $trans - [(Mo^{V}O)_{2}O(H_{2}homocit)_{2}(bpy)_{2}] 4H_{2}O (3), [(Mo^{V}O)_{2}O(H_{2}cit)_{2}(bpy)_{2}] 4H_{2}O$ (5),¹ [Mo₃^{IV}SO₃(glyc)₂(im)₅]·im·H₂O (13),² Na₂[Mo₃^{IV}SO₃(*R*,*S*-lact)₃(im)₃] ·10H₂O $[Mo_3^{IV}S_4(PPh_3)_3(Hlact)_2(lact)]$ (15),³ $Mo_3^{V/VI}O_8(im)_4$ im H₂O $(14)^{2}$ $(18),^4$ $Mo_3^{V/VI}O_8(im)_4 H_2O (19),^4 Mo_2^{VI}O_6(im)_4 (20),^5 cis-Na_2[Mo_2^VO_4(ox)_2(im)_2] 4.5H_2O$ (21),⁴ *cis*-K₂[Mo₂^VO₄(ox)₂(im)₂] 3H₂O (22),⁴ K(Him)[Mo₃^{IV}O₄(ox)₃(im)₃] 3H₂O $(4-MePyH)(H_3O)[Mo_3^{IV}O_4(C_2O_4)_3(4-MePy)_3] H_2O$ $(24),^{6}$ $(23),^4$ $(MeNC_6H_7)(H_3O)[Mo_3^{IV}O_4(C_2O_4)_3(4-MePy)_3] \cdot \frac{1}{2}(4-MePy)$ $(25),^{6}$ Na₂[Mo₃^{IV}O₄((O₂CCH₂)₂NCH₃)₃] 7H₂O (**26**),⁷ [Mo₃^{IV}O(OH)₃(Hnta)₃] Cl 3H₂O (**27**),⁸ $[Mo_4^VO_8(glyc)_2Py_4]$ (**28**),⁹ $(PyH)_4[Mo_4^VO_8Cl_4(glyc)_2]$ 2EtOH $(29),^{9}$ $Na_4[Mo_6^{IV}O_8(EDTA)_3] \cdot 14H_2O$ (**30**),¹⁰ $[Mo_6^{IV}O_{10}(bpy)_4(Hnta)_2] \cdot 10H_2O$ **(31**),¹¹ $[Mo_6^{IV}O_{10}(R,S-lact)_2(im)_{10}] \cdot 16H_2O (32)^2 [Mo_3^{IV}SO_3(acac)_3(py)_3] PF_6 \cdot 2C_6H_5CH_3$ $(33)^{12}$ and $[Mo_3^{IV}S_4(Clqn)_3(H_2O)_3]^+$ $(34)^{13}$ (HClqn = C₉H₆ClNO).

Complexes ^a (Mo ⁿ⁺)	Mo–N	Mo-µ2-O/S	Мо-Мо	Mo-µ3-O/S
		1.922(4) _{av} (IV)		
1(IV/VI)	2.199(6) _{av}	2.045(4) _{av} (IV)	2.508(1) _{av}	2.042(4) _{av}
		1.838(4) _{av} (VI)		
		1.930(4) _{av} (IV)		
2(IV/VI)	2.199(5) _{av}	2.032(4) _{av} (IV)	2.593(1) _{av}	2.367(1) _{av}
		1.824(4) _{av} (VI)		
3 (V)	2.273(2) _{av}	1.867(1) _{av}		
$5(V)^{1}$	2.307(4) _{av}	1.882(3) _{av}		
$18(V/VI)^4$	2.201(5) _{av}	1.947(4) _{av}	2.573(1)	
$19(V/VI)^4$	2.203(5) _{av}	1.952(4) _{av}	2.573(1)	
$20(VI)^5$	2.225(4) _{av}	1.940(3) _{av}		
$21(V)^4$	2.186(3) _{av}	1.938(3) _{av}	2.560(1)	
$22(V)^4$	2.187(3) _{av}	1.940(3) _{av}	2.548 (1)	
$23(IV)^4$	2.184(6) _{av}	1.910(4) _{av}	2.494(1) _{av}	2.030(4) _{av}
$24(IV)^{6}$		1.914(3) _{av}	2.499(5) _{av}	2.038(3) _{av}
$25(IV)^{6}$		1.927(2) _{av}	2.503(3) _{av}	2.038(2) _{av}
$26(IV)^7$	2.231(5) _{av}	1.918(4) _{av}	2.495(1) _{av}	2.043(4) _{av}
$27(IV)^8$	2.23(1) _{av}	1.903(8) _{av}	2.482(1) _{av}	2.046(8) _{av}
$28(V)^9$		1.935(3) _{av}	2.612(1)	2.095(3) _{av}
$29(V)^9$	2.226(4) _{av}	1.926(3) _{av}	2.588(1)	2.085(3) _{av}
$30(IV)^{10}$	2.274(9) _{av}	1.920(7) _{av}	2.506(1) _{av}	2.042(7) _{av}
31 (IV) ¹¹	2.227(4) _{av}	1.946(3) _{av}	2.532(2) _{av}	2.050(3) _{av}
$32(IV)^2$	2.206(6) _{av}	1.946(6) _{av}	2.529(1) _{av}	2.047(4) _{av}
33 (IV) ¹²	2.246(6) _{av}	1.930(5) _{av}	2.594(1) _{av}	2.364(2) _{av}
$13(IV)^2$	2.223(3) _{av}	1.929(2) _{av}	2.610(1) _{av}	2.360(1) _{av}

$14(IV)^2$	2.243(8) _{av}	1.936(6) _{av}	2.612(1) _{av}	2.369(2) _{av}
$34(IV)^{13}$	2.229(4) _{av}	2.301(1) _{av}	2.766(1) _{av}	2.345(1) _{av}
$\mathbf{15(IV)}^{3}$		2.296(1) _{av}	2.761(1) _{av}	2.363(1) _{av}

Table S5. 13 C NMR data of K2{Mo3^{IV}O4(im)3[Mo^{VI}O3(Hcit)]2}·3im·4H2O (1),(Him)2{Mo3^{IV}SO3(im)3[Mo^{VI}O3(Hcit)]2}·im·6H2O (2)(Him)2{Mo3^{IV}SO3(im)3[Mo^{VI}O3(Hcit)]2}·im·6H2O (2)(Et4N)[Mo^{VI}O2Cl(H2cit)]·H2O (4).

Complex	α-hydroxy/alkoxy	α-carboxy	β-carboxy	methylene
1	83.5	185.5	181.3	45.2
2	82.9	185.4	181.7	44.5
4	87.0	185.8	175.8	45.6

TableS6.Crystallographicdataandstructuralrefinementsfor $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot 3im\cdot 4H_2O$ (1), $(Him)_2\{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot im\cdot 6H_2O$ (2), $trans-[(Mo^VO)_2O(H_2homocit)_2(bpy)_2]$ $4H_2O$ (3)(4).

Identification code	1	2
Empirical formula	$C_{30}H_{42}K_2Mo_5N_{12}O_{28}\\$	$C_{30}H_{48}Mo_5N_{12}O_{29}S$
Formula weight	1576.62	1552.53
Temperature/K	173.0	173.0
Crystal system	triclinic	monoclinic
Space group	Pī	$P2_1/c$
a/Å	9.7975(3)	21.9484(4)
$b/{ m \AA}$	13.8912(7)	15.2878(3)
$c/{ m \AA}$	18.5268(8)	15.5230(3)
a/°	100.570(4)	90
β/ °	94.254(3)	103.660(2)
γ/ °	101.331(4)	90
Volume/Å ³	2414.4(2)	5061.3 (2)
Ζ	2	4
$d_{\rm calc} {\rm g/cm}^3$	2.163	2.030
μ/mm^{-1}	12.849	11.190
<i>F</i> (000)	1548.0	3056.0
Crystal size/mm ³	$0.24\times 0.08\times 0.04$	$0.3 \times 0.2 \times 0.1$
Radiation	CuKa ($\lambda = 1.54184$)	CuKα ($λ = 1.54184$)
2θrange for data collection/°	6.626 to 124.324	7.114 to 124.368
	$-5 \le h \le 11$,	$-25 \le h \le 25$,
Index ranges	$-15 \le k \le 15$,	$-14 \le k \le 17$,
	$-21 \le l \le 21$	$-17 \le l \le 17$
Reflections collected	13938	16632

	7516	7914	
Independent reflections	$[R_{\rm int} = 0.0337,$	$[R_{\rm int} = 0.0331,$	
	$R_{\rm sigma} = 0.0465$]	$R_{\rm sigma} = 0.0422$]	
Data/restraints/parameters	7516/55/685	7914/23/679	
Goodness–of–fit on F^2	1.046	1.052	
Final <i>R</i> indexes $[I \ge 2\sigma]$	$R_1 = 0.0465,$	$R_1 = 0.0446,$	
(I)]	$wR_2 = 0.1276$	$wR_2 = 0.1137$	
Final Dindayas [all data]	$R_1 = 0.0487,$	$R_1 = 0.0462,$	
Final K indexes [all data]	$wR_2 = 0.1299$	$wR_2 = 0.1153$	
Largest diff. peak/hole /	2.99/-1.47	2.76/-1.54	
е :Å ⁻³			

Flack parameter

Identification code	3	4
Empirical formula	$C_{34}H_{40}Mo_2N_4O_{21}\\$	$C_{14}H_{28}NO_{10}MoCl$
Formula weight	1032.58	501.77
Temperature/K	173	173.0(1)
Crystal system	triclinic	orthorhombic
Space group	Pī	$P 2_1 2_1 2_1$
a/Å	11.669 (2)	7.6683(3)
$b/{ m \AA}$	13.252(1)	12.0711(3)
$c/{ m \AA}$	15.392(2)	22.2111(6)
lpha/ °	97.117(9)	90
β/ °	104.18(1)	90
γ/ °	115.42(1)	90
Volume/Å ³	2011.8(5)	2056.0(1)
Ζ	2	4
$d_{\rm calc}~{ m g/cm}^3$	1.685	1.621
μ/mm^{-1}	5.900	0.817

<i>F</i> (000)	1024.0	1032.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.01	0.4 imes 0.1 imes 0.08
Radiation	CuKa (λ = 1.54184)	MoKα (λ = 0.71073)
2θrange for data collection/°	6.136 to 124.508	6.456 to 59.114
	$-13 \le h \le 13$,	$-10 \le h \le 7,$
Index ranges	$-10 \le k \le 15$,	$-16 \le k \le 13,$
	$-17 \le l \le 17$	$-30 \le l \le 11$
Reflections collected	11637	6054
	6264	4183
Independent reflections	[Rint = 0.0686,	$[R_{\rm int} = 0.0418,$
	<i>R</i> sigma = 0.1034]	$R_{\rm sigma} = 0.0868$]
Data/restraints/parameters	6264/4/500	4183/0/253
Goodness–of–fit on F^2	1.037	1.059
Final <i>R</i> indexes $[I \ge 2\sigma]$	R1 = 0.0769,	$R_1 = 0.0505,$
(<i>I</i>)]	wR2 = 0.2138	$wR_2 = 0.0805$
	R1 = 0.1083,	$R_1 = 0.0618,$
Final <i>R</i> indexes [all data]	wR2 = 0.2387	$wR_2 = 0.0857$
Largest diff. peak/hole / e \AA^{-3}	2.44/-0.99	0.78/-0.70
Flack parameter		0.03(6)

Table S7. Selected bond distances (Å) and angles ($^{\circ}$) for $K_2\{Mo_3^{IV}O_4(im)_3[Mo^{VI}O_3(Hcit)]_2\}\cdot 3im\cdot 4H_2O$ (1).

$K_{2}[WO_{3} O_{4}(III)_{3}]WI_{3}$	$0 0_3(11010)_{12}^{-5} 5111141$	$I_2 O(\mathbf{I}).$	
Mo(1)–Mo(2)	2.5037(7)	Mo(3)–O(21)	2.047(4)
Mo(1)-Mo(3)	2.5010(6)	Mo(3)–O(23)	1.917(4)
Mo(1)-O(10)	2.063(4)	Mo(3)–O(24)	1.907(4)
Mo(1)-O(20)	2.027(4)	Mo(3)–N(5)	2.201(6)
Mo(1)-O(21)	2.046(4)	Mo(4)–O(1)	2.185(4)
Mo(1)-O(22)	1.946(4)	Mo(4)–O(2)	2.104(5)
Mo(1)-O(24)	1.934(4)	Mo(4)–O(4)	2.266(4)
Mo(1)–N(1)	2.196(5)	Mo(4)–O(8)	1.727(4)
Mo(2)-Mo(3)	2.5201(7)	Mo(4)–O(9)	1.707(5)
Mo(2)–O(1)	2.156(4)	Mo(4)–O(10)	1.836(4)
Mo(2)–O(6)	2.080(5)	Mo(5)–O(11)	2.198(4)
Mo(2)–O(21)	2.032(4)	Mo(5)–O(12)	2.097(4)
Mo(2)–O(22)	1.913(4)	Mo(5)–O(14)	2.251(5)
Mo(2)–O(23)	1.914(4)	Mo(5)–O(18)	1.720(5)
Mo(2)–N(3)	2.199(6)	Mo(5)–O(19)	1.718(5)
Mo(3)–O(11)	2.145(4)	Mo(5)–O(20)	1.840(4)
Mo(3)–O(16)	2.062(4)		
Mo(2)-Mo(1)-Mo(3)	60.47(2)	O(21)-Mo(3)-Mo(1)	52.3(1)
O(10)-Mo(1)-Mo(2)	94.6(1)	O(21)-Mo(3)-Mo(2)	51.6(1)
O(10)-Mo(1)-Mo(3)	141.5(1)	O(21)-Mo(3)-O(23)	99.0(2)
O(10)-Mo(1)-O(20)	86.2(2)	O(21)-Mo(3)-O(24)	101.6(2)
O(10)-Mo(1)-O(21)	89.3(2)	O(21)-Mo(3)-N(5)	173.8(2)
O(10)-Mo(1)-O(22)	88.4(2)	O(23)-Mo(3)-Mo(1)	96.1(1)
O(10)-Mo(1)-O(24)	169.4(2)	O(23)-Mo(3)-Mo(2)	48.8(1)
O(10)-Mo(1)-N(1)	83.0(2)	O(23)-Mo(3)-O(24)	96.5(2)
O(20)–Mo(1)–Mo(2)	140.1(1)	O(23)-Mo(3)-N(5)	85.2(2)
O(20)-Mo(1)-Mo(3)	95.4(1)	O(24)-Mo(3)-Mo(1)	49.8(1)
O(20)-Mo(1)-O(21)	88.3(2)	O(24)-Mo(3)-Mo(2)	94.4(1)
O(20)-Mo(1)-O(22)	169.8(2)	O(24)-Mo(3)-N(5)	82.4(2)
O(20)-Mo(1)-O(24)	90.7(2)	N(5)-Mo(3)-Mo(1)	132.1(2)
O(20)-Mo(1)-N(1)	85.7(2)	N(5)-Mo(3)-Mo(2)	133.4(2)
O(21)–Mo(1)–Mo(2)	51.9(1)	O(1)-Mo(4)-O(2)	73.0(2)
O(21)-Mo(1)-Mo(3)	52.3(1)	O(1)-Mo(4)-O(4)	78.4(2)
O(21)-Mo(1)-O(22)	100.3(2)	O(1)-Mo(4)-O(8)	158.7(2)
O(21)-Mo(1)-O(24)	100.7(2)	O(1)-Mo(4)-O(9)	91.8(2)
O(21)-Mo(1)-N(1)	170.6(2)	O(1)-Mo(4)-O(10)	89.0(2)
O(22)-Mo(1)-Mo(2)	49.0(1)	O(2)-Mo(4)-O(4)	77.8(2)
O(22)-Mo(1)-Mo(3)	94.2(1)	O(2)-Mo(4)-O(8)	90.1(2)
O(22)-Mo(1)-O(24)	93.0(2)	O(2)-Mo(4)-O(9)	92.7(2)
O(22)-Mo(1)-N(1)	85.1(2)	O(2)-Mo(4)-O(10)	156.2(2)
O(24)-Mo(1)-Mo(2)	94.3(1)	O(4)-Mo(4)-O(8)	85.6(2)

O(24)-Mo(1)-Mo(3)	48.9(1)	O(4)–Mo(4)–O(9)	168.0(2)
O(24)-Mo(1)-N(1)	86.6(2)	O(4)-Mo(4)-O(10)	83.4(2)
N(1)-Mo(1)-Mo(2)	134.0(2)	O(8)-Mo(4)-O(9)	101.9(2)
N(1)-Mo(1)-Mo(3)	135.5(2)	O(8)-Mo(4)-O(10)	103.1(2)
Mo(1)-Mo(2)-Mo(3)	59.71(2)	O(9)-Mo(4)-O(10)	103.6(2)
O(1)-Mo(2)-Mo(1)	94.3(1)	O(11)-Mo(5)-O(12)	73.3(2)
O(1)-Mo(2)-Mo(3)	140.2(1)	O(11)-Mo(5)-O(14)	77.3(2)
O(1)-Mo(2)-O(6)	81.5(2)	O(11)-Mo(5)-O(18)	157.6(2)
O(1)-Mo(2)-O(21)	88.4(2)	O(11)-Mo(5)-O(19)	93.1(2)
O(1)-Mo(2)-O(22)	88.7(2)	O(11)-Mo(5)-O(20)	88.4(2)
O(1)-Mo(2)-O(23)	169.4(2)	O(12)-Mo(5)-O(14)	78.4(2)
O(1)-Mo(2)-N(3)	85.5(2)	O(12)-Mo(5)-O(18)	90.9(2)
O(6)-Mo(2)-Mo(1)	140.1(1)	O(12)-Mo(5)-O(19)	92.4(2)
O(6)-Mo(2)-Mo(3)	99.5(1)	O(12)-Mo(5)-O(20)	157.1(2)
O(6)-Mo(2)-O(21)	87.8(2)	O(14)-Mo(5)-O(18)	84.2(2)
O(6)-Mo(2)-O(22)	166.1(2)	O(14)-Mo(5)-O(19)	168.2(2)
O(6)-Mo(2)-O(23)	91.9(2)	O(14)-Mo(5)-O(20)	84.4(2)
O(6)-Mo(2)-N(3)	84.5(2)	O(18)-Mo(5)-O(19)	103.5(2)
O(21)-Mo(2)-Mo(1)	52.4(1)	O(18)-Mo(5)-O(20)	102.2(2)
O(21)-Mo(2)-Mo(3)	52.1(1)	O(19)-Mo(5)-O(20)	102.4(2)
O(21)-Mo(2)-O(22)	101.9(2)	Mo(1)-O(21)-Mo(2)	75.8(2)
O(21)-Mo(2)-O(23)	99.7(2)	Mo(1)-O(22)-Mo(2)	80.9(2)
O(21)-Mo(2)-N(3)	170.8(2)	Mo(1)-O(21)-Mo(3)	75.4(2)
O(22)-Mo(2)-Mo(1)	50.1(1)	Mo(1)-O(24)-Mo(3)	81.3(2)
O(22)-Mo(2)-Mo(3)	94.4(1)	Mo(1)-O(10)-Mo(4)	131.5(2)
O(22)-Mo(2)-O(23)	96.3(2)	Mo(1)-O(20)-Mo(5)	131.6(2)
O(22)-Mo(2)-N(3)	84.9(2)	Mo(2)-O(21)-Mo(3)	76.3(2)
O(23)-Mo(2)-Mo(1)	96.1(1)	Mo(2)-O(23)-Mo(3)	82.3(2)
O(23)-Mo(2)-Mo(3)	48.9(1)	Mo(2)-O(1)-Mo(4)	119.6(2)
O(23)-Mo(2)-N(3)	85.6(2)	Mo(3)-O(11)-Mo(5)	120.1(2)
N(3)-Mo(2)-Mo(1)	135.0(2)	C(1)-O(1)-Mo(2)	125.0(4)
N(3)-Mo(2)-Mo(3)	134.3(1)	C(1)-O(1)-Mo(4)	113.5(4)
Mo(1)-Mo(3)-Mo(2)	59.82(2)	C(2)–O(2)–Mo(4)	120.7(4)
O(11)-Mo(3)-Mo(1)	93.6(1)	C(4)–O(4)–Mo(4)	133.2(4)
O(11)-Mo(3)-Mo(2)	138.8(1)	C(6)–O(6)–Mo(2)	127.9(4)
O(11)-Mo(3)-O(16)	82.0(2)	C(7)–O(11)–Mo(3)	125.6(4)
O(11)-Mo(3)-O(21)	87.5(2)	C(7)–O(11)–Mo(5)	113.1(4)
O(11)-Mo(3)-O(23)	170.3(2)	C(8)–O(12)–Mo(5)	120.4(4)
O(11)-Mo(3)-O(24)	89.2(2)	C(10)-O(14)-Mo(5)	135.0(4)
O(11)-Mo(3)-N(5)	87.8(2)	C(12)-O(16)-Mo(3)	131.9(4)
O(16)-Mo(3)-Mo(1)	141.6(1)	C(13)–N(1)–Mo(1)	128.8(5)
O(16)-Mo(3)-Mo(2)	99.7(1)	C(15)–N(1)–Mo(1)	124.8(5)
O(16)-Mo(3)-O(21)	89.3(2)	C(16)–N(3)–Mo(2)	125.7(5)
O(16)-Mo(3)-O(23)	90.9(2)	C(18)-N(3)-Mo(2)	127.0(4)

O(16)-Mo(3)-O(24)	165.7(2)	C(19)–N(5)–Mo(3)	128.2(5)
O(16)-Mo(3)-N(5)	86.1(2)	C(21)–N(5)–Mo(3)	125.4(4)

Table S8. Selected bond distances (Å) and angles (°) for
 $(Him)_2 \{Mo_3^{IV}SO_3(im)_3[Mo^{VI}O_3(Hcit)]_2\} \cdot im \cdot 6H_2O$ (2).and angles (°) for
Mo(1)-Mo(2)forMo(1)-Mo(2)2.5831(6)Mo(3)-O(22)1.946(4)Mo(1)-Mo(3)2.5882(6)Mo(3)-O(23)1.898(4)

Mo(1)-Mo(2)	2.5831(6)	Mo(3)–O(22)	1.946(4)
Mo(1)–Mo(3)	2.5882(6)	Mo(3)–O(23)	1.898(4)
Mo(1)-O(10)	2.023(4)	Mo(3)–N(5)	2.217(5)
Mo(1)-O(20)	2.041(4)	Mo(3)–S(1)	2.363(1)
Mo(1)–O(21)	1.950(4)	Mo(4)–O(1)	2.194(4)
Mo(1)-O(23)	1.936(4)	Mo(4)–O(2)	2.103(4)
Mo(1)–N(1)	2.185(5)	Mo(4)–O(4)	2.320(4)
Mo(1)–S(1)	2.371(1)	Mo(4)–O(8)	1.708(4)
Mo(2)–Mo(3)	2.6066(6)	Mo(4)–O(9)	1.733(4)
Mo(2)–O(1)	2.187(4)	Mo(4)–O(10)	1.825(4)
Mo(2)–O(6)	2.071(4)	Mo(5)–O(11)	2.208(4)
Mo(2)–O(21)	1.898(4)	Mo(5)–O(12)	2.104(4)
Mo(2)–O(22)	1.953(4)	Mo(5)–O(14)	2.218(4)
Mo(2)–N(3)	2.195(5)	Mo(5)-O(18)	1.717(4)
Mo(2)–S(1)	2.366(1)	Mo(5)-O(19)	1.724(4)
Mo(3)–O(11)	2.191(4)	Mo(5)-O(20)	1.823(4)
Mo(3)–O(16)	2.086(4)		
Mo(2)-Mo(1)-Mo(3)	60.54(2)	O(22)-Mo(3)-Mo(1)	96.0(1)
O(10)-Mo(1)-Mo(2)	95.3(1)	O(22)-Mo(3)-Mo(2)	48.2(1)
O(10)-Mo(1)-Mo(3)	145.5(1)	O(22)-Mo(3)-O(23)	96.0(2)
O(10)-Mo(1)-O(20)	91.3(2)	O(22)-Mo(3)-N(5)	86.1(2)
O(10)-Mo(1)-O(21)	87.6(2)	O(22)-Mo(3)-S(1)	102.2(1)
O(10)-Mo(1)-O(23)	167.4(2)	O(23)-Mo(3)-Mo(1)	48.2(1)
O(10)-Mo(1)-N(1)	86.1(2)	O(23)-Mo(3)-Mo(2)	92.1(1)
O(10)-Mo(1)-S(1)	90.0(1)	O(23)-Mo(3)-N(5)	80.4(2)
O(20)-Mo(1)-Mo(2)	144.6(1)	O(23)-Mo(3)-S(1)	104.2(1)
O(20)-Mo(1)-Mo(3)	96.1(1)	N(5)-Mo(3)-Mo(1)	128.5(1)
O(20)-Mo(1)-O(21)	168.4(2)	N(5)-Mo(3)-Mo(2)	132.8(1)
O(20)-Mo(1)-O(23)	88.8(2)	N(5)-Mo(3)-S(1)	170.0(1)
O(20)-Mo(1)-N(1)	82.8(2)	S(1)-Mo(3)-Mo(1)	56.99(3)
O(20)-Mo(1)-S(1)	88.5(1)	S(1)-Mo(3)-Mo(2)	56.59(3)
O(21)-Mo(1)-Mo(2)	47.0(1)	O(1)-Mo(4)-O(2)	72.4(2)
O(21)-Mo(1)-Mo(3)	91.4(1)	O(1)-Mo(4)-O(4)	76.0(1)
O(21)-Mo(1)-O(23)	89.8(2)	O(1)-Mo(4)-O(8)	94.4(2)
O(21)-Mo(1)-N(1)	85.6(2)	O(1)-Mo(4)-O(9)	155.3(2)
O(21)-Mo(1)-S(1)	103.1(1)	O(1)-Mo(4)-O(10)	89.8(2)
O(23)-Mo(1)-Mo(2)	92.0(1)	O(2)-Mo(4)-O(4)	78.1(2)
O(23)-Mo(1)-Mo(3)	46.9(1)	O(2)-Mo(4)-O(8)	93.8(2)
O(23)-Mo(1)-N(1)	81.4(2)	O(2)-Mo(4)-O(9)	90.4(2)
O(23)–Mo(1)–S(1)	102.7(1)	O(2)-Mo(4)-O(10)	156.5(2)
N(1)-Mo(1)-Mo(2)	132.3(1)	O(4)–Mo(4)–O(8)	168.9(2)

N(1)-Mo(1)-Mo(3)	128.3(1)	O(4)–Mo(4)–O(9)	83.4(2)
N(1)-Mo(1)-S(1)	170.3(1)	O(4)-Mo(4)-O(10)	82.9(2)
S(1)-Mo(1)-Mo(2)	56.86(3)	O(8)-Mo(4)-O(9)	104.4(2)
S(1)-Mo(1)-Mo(3)	56.73(3)	O(8)-Mo(4)-O(10)	103.0(2)
Mo(1)-Mo(2)-Mo(3)	59.83(2)	O(9)-Mo(4)-O(10)	101.0(2)
O(1)-Mo(2)-Mo(1)	92.0(1)	O(11)-Mo(5)-O(12)	72.8(1)
O(1)-Mo(2)-Mo(3)	141.3(1)	O(11)-Mo(5)-O(14)	77.5(2)
O(1)-Mo(2)-O(6)	82.4(2)	O(11)-Mo(5)-O(18)	90.5(2)
O(1)-Mo(2)-O(21)	86.6(2)	O(11)-Mo(5)-O(19)	157.1(2)
O(1)-Mo(2)-O(22)	170.7(2)	O(11)-Mo(5)-O(20)	90.8(2)
O(1)-Mo(2)-N(3)	85.0(2)	O(12)-Mo(5)-O(14)	77.7(2)
O(1)-Mo(2)-S(1)	86.5(1)	O(12)-Mo(5)-O(18)	90.5(2)
O(6)-Mo(2)-Mo(1)	145.3(1)	O(12)-Mo(5)-O(19)	88.9(2)
O(6)-Mo(2)-Mo(3)	105.4(1)	O(12)-Mo(5)-O(20)	158.9(2)
O(6)-Mo(2)-O(21)	162.1(2)	O(14)-Mo(5)-O(18)	165.1(2)
O(6)-Mo(2)-O(22)	93.7(2)	O(14)-Mo(5)-O(19)	85.2(2)
O(6)-Mo(2)-N(3)	83.0(2)	O(14)-Mo(5)-O(20)	85.9(2)
O(6)-Mo(2)-S(1)	88.4(1)	O(18)-Mo(5)-O(19)	103.8(2)
O(21)-Mo(2)-Mo(1)	48.7(1)	O(18)-Mo(5)-O(20)	103.2(2)
O(21)-Mo(2)-Mo(3)	92.0(1)	O(19)-Mo(5)-O(20)	103.0(2)
O(21)-Mo(2)-O(22)	95.1(2)	Mo(1)-O(21)-Mo(2)	84.3(1)
O(21)-Mo(2)-N(3)	82.1(2)	Mo(1)-S(1)-Mo(2)	66.11(4)
O(21)-Mo(2)-S(1)	104.9(1)	Mo(1)-O(23)-Mo(3)	84.9(2)
O(22)-Mo(2)-Mo(1)	96.0(1)	Mo(1)-S(1)-Mo(3)	66.29(4)
O(22)-Mo(2)-Mo(3)	47.9(1)	Mo(1)-O(10)-Mo(4)	134.0(2)
O(22)-Mo(2)-N(3)	86.2(2)	Mo(1)-O(20)-Mo(5)	132.9(2)
O(22)-Mo(2)-S(1)	101.9(1)	Mo(2)-O(22)-Mo(3)	83.9(2)
N(3)-Mo(2)-Mo(1)	130.7(1)	Mo(2)-S(1)-Mo(3)	66.90(4)
N(3)-Mo(2)-Mo(3)	133.2(1)	Mo(2)-O(1)-Mo(4)	120.8(2)
N(3)-Mo(2)-S(1)	168.6(1)	Mo(3)-O(11)-Mo(5)	121.3(2)
S(1)-Mo(2)-Mo(1)	57.04(3)	C(1)-O(1)-Mo(2)	122.8(3)
S(1)-Mo(2)-Mo(3)	56.51(3)	C(1)-O(1)-Mo(4)	113.1(3)
Mo(1)-Mo(3)-Mo(2)	59.64(2)	C(2)–O(2)–Mo(4)	118.6(4)
O(11)-Mo(3)-Mo(1)	91.9(1)	C(4)–O(4)–Mo(4)	134.8(4)
O(11)-Mo(3)-Mo(2)	141.1(1)	C(6)–O(6)–Mo(2)	131.7(4)
O(11)-Mo(3)-O(16)	83.0(2)	C(7)–O(11)–Mo(3)	123.4(3)
O(11)-Mo(3)-O(22)	170.7(2)	C(7)–O(11)–Mo(5)	112.7(3)
O(11)-Mo(3)-O(23)	85.6(2)	C(8)-O(12)-Mo(5)	121.3(4)
O(11)-Mo(3)-N(5)	85.2(2)	C(10)-O(14)-Mo(5)	137.0(4)
O(11)-Mo(3)-S(1)	86.3(1)	C(12)-O(16)-Mo(3)	132.0(4)
O(16)-Mo(3)-Mo(1)	145.9(1)	C(13)-N(1)-Mo(1)	126.7(4)
O(16)-Mo(3)-Mo(2)	105.4(1)	C(15)-N(1)-Mo(1)	126.5(4)
O(16)-Mo(3)-O(22)	93.1(2)	C(16)-N(3)-Mo(2)	127.9(4)
O(16)-Mo(3)-O(23)	162.1(2)	C(18)-N(3)-Mo(2)	126.0(4)

O(16)–Mo(3)–N(5)	84.8(2)	C(19)–N(5)–Mo(3)	122.3(4)
O(16)–Mo(3)–S(1)	88.9(1)	C(21)–N(5)–Mo(3)	131.8(4)

		()	
trans-[(Mo ^V O) ₂ O(H	H ₂ homocit) ₂ (bpy) ₂] 4H	H ₂ O (3).	
Mo(1)–O(1)	1.949 (1)	Mo(2)–O(9)	1.873(1)
Mo(1)–O(2)	2.065(2)	Mo(2)–O(10)	1.954(1)
Mo(1)–O(8)	1.671(1)	Mo(2)–O(11)	2.070 (1)
Mo(1)–O(9)	1.861(1)	Mo(2)–O(17)	1.669(1)
Mo(1)–N(1)	2.222(2)	Mo(2)–N(3)	2.309(1)
Mo(1)–N(2)	2.324(2)	Mo(2)–N(4)	2.237(2)
O(1)-Mo(1)-O(2)	78.80(6)	O(11)-Mo(2)-N(3)	83.39(5)
O(1)-Mo(1)-N(1)	160.10(6)	O(11)-Mo(2)-N(4)	87.89(5)
O(1)-Mo(1)-N(2)	91.70(5)	O(17)-Mo(2)-O(9)	101.19(6)
O(2)-Mo(1)-N(1)	89.99(6)	O(17)-Mo(2)-O(10)	109.74(6)
O(2)-Mo(1)-N(2)	81.25(5)	O(17)-Mo(2)-O(11)	97.77(6)
O(8)–Mo(1)–O(1)	109.86(6)	O(17)-Mo(2)-N(3)	156.21(7)
O(8)–Mo(1)–O(2)	98.22(6)	O(17)-Mo(2)-N(4)	85.97(6)
O(8)-Mo(1)-O(9)	102.04(6)	N(3)-Mo(2)-N(4)	70.30(5)
O(8)–Mo(1)–N(1)	87.83(6)	Mo(1)-O(9)-Mo(2)	168.00(7)
O(8)-Mo(1)-N(2)	158.00(6)	C(1)–O(1)–Mo(1)	118.9(1)
O(9)–Mo(1)–O(1)	92.51(5)	C(2)–O(2)–Mo(1)	116.1(2)
O(9)–Mo(1)–O(2)	159.66(5)	C(8)–N(1)–Mo(1)	119.7(1)
O(9)-Mo(1)-N(1)	92.56(5)	C(12)-N(1)-Mo(1)	121.0(1)
O(9)-Mo(1)-N(2)	80.66(5)	C(13)–N(2)–Mo(1)	118.4(1)
N(1)-Mo(1)-N(2)	70.20(5)	C(17)–N(2)–Mo(1)	121.8(1)
O(9)-Mo(2)-O(10)	91.88(5)	C(18)-O(10)-Mo(2)	116.2(1)
O(9)–Mo(2)–O(11)	160.74(5)	C(19)-O(11)-Mo(2)	115.9(1)
O(9)-Mo(2)-N(3)	80.64(5)	C(25)-N(3)-Mo(2)	122.2(1)
O(9)-Mo(2)-N(4)	96.74(5)	C(29)–N(3)–Mo(2)	118.5(1)
O(10)–Mo(2)–O(11)	78.48(5)	C(30)–N(4)–Mo(2)	121.4(1)
O(10)-Mo(2)-N(3)	93.82(5)	C(34)-N(4)-Mo(2)	120.7(1)
O(10)-Mo(2)-N(4)	160.29(6)		

Table S9. Selected bond distances (Å) and angles (°) for

	Sciected Dolla	distances (A) and	angles () for
$(Et_4N)[Mo^{VI}O_2Cl(H_2cit)] \cdot H_2O (4).$			
Mo(1)–Cl(1)	2.358(2)	Mo(1)–O(4)	2.433(4)
Mo(1)–O(1)	1.931(4)	Mo(1)–O(8)	1.701(4)
Mo(1)–O(2)	2.178(3)	Mo(1)–O(9)	1.690(4)
O(1)-Mo(1)-O(2)	76.0(2)	O(9)–Mo(1)–O(1)	103.1(2)
O(1)-Mo(1)-O(4)	76.2(2)	O(9)-Mo(1)-O(2)	95.7(2)
O(1)-Mo(1)-Cl(1)	150.1(1)	O(9)-Mo(1)-O(4)	172.1(2)
O(2)-Mo(1)-O(4)	76.5(1)	O(9)-Mo(1)-O(8)	103.3(2)
O(2)-Mo(1)-Cl(1)	81.1(1)	O(9)–Mo(1)–Cl(1)	98.1(2)
O(8)–Mo(1)–O(1)	99.0(2)	Cl(1)-Mo(1)-O(4)	80.0(1)
O(8)-Mo(1)-O(2)	161.0(2)	C(1)–O(1)–Mo(1)	119.9(3)
O(8)-Mo(1)-O(4)	84.5(2)	C(2)–O(2)–Mo(1)	114.8(3)
O(8)–Mo(1)–Cl(1)	96.5(2)	C(4)–O(4)–Mo(1)	124.8(4)

Table S10. Selected bond distances (Å) and angles (°) for

- 1. Z. H. Zhou, C. Y. Chen, Z. X. Cao, K. R. Tsai and Y. L. Chow, *Dalton Trans.*, 2008, 2475-2479.
- 2. S. Y. Wang, W. T. Jin, H. B. Chen and Z. H. Zhou, *Dalton Trans.*, 2018, **47**, 7412-7421.
- 3. M. N. Sokolov, S. A. Adonin, A. V. Virovets, P. A. Abramov, C. Vicent, R. Llusar and V. P. Fedin, *Inorg. Chim. Acta*, 2013, **395**, 11-18.
- 4. Q. L. Chen, H. B. Chen, Z. X. Cao and Z. H. Zhou, *Dalton Trans.*, 2013, **42**, 1627-1636.
- 5. Y. W. Lin, Y. P. Tong, C. Yang and Y. R. Lin, *Inorg. Chem. Commun*, 2009, **12**, 252-254.
- 6. B. Modec and P. Bukovec, Inorg. Chim. Acta, 2015, 424, 226-234.
- S. F. Gheller, T. W. Hambley, R. T. C. Brownlee, M. J. O'Connor, M. R. Snow and A. G. Wedd, J. Am. Chem. Soc., 1983, 105, 1527-1532.
- 8. Z. H. Zhou, Q. Xu, J. Lin and S. W. Ng, Inorg. Chem. Commun, 2007, 10, 1461-1464.
- 9. B. Modec, D. Dolenc and M. Kasunic, *Inorg. Chem.*, 2008, **47**, 3625-3633.
- 10. A. Bino, F. A. Cotton and Z. Dori, J. Am. Chem. Soc., 1979, 101, 3842-3847.
- 11. J. Zhao and L. Xu, *Eur. J. Inorg. Chem.*, 2011, **2011**, 4096-4102.
- 12. P. A. Abramov, A. Yu Laricheva, E. V. Peresypkina, I. V. Mirzaeva, N. K. Moroz and M. N. Sokolov, *Inorg. Chim. Acta*, 2012, **383**, 7-12.
- 13. H. Kawasaki, G. Sakane and T. Shibahara, *Inorg. Chem. Commun*, 2005, **8**, 777-781.