Supporting Information for

NMR-based investigations of acyl-functionalized piperazines concerning their conformational behavior[†]

Robert Wodtke,^a Janine Steinberg,^{a,b} Martin Köckerling,^c Reik Löser,^{*a,b} and Constantin Mamat^{*a,b}

a Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany

b Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, D-01062 Dresden, Germany

c Institut für Chemie – Anorganische Festkörperchemie, Universität Rostock, Albert-Einstein-Straße 4a, D-18059 Rostock, Germany

Content:

Temperature-depended ¹ H NMR spectra of compounds 3a-i	S2
Temperature-depended ¹ H NMR spectra of compounds 4a-g	S11
1 H/ 13 C NMR spectra and Temperature-depended 1 H NMR spectra of compounds 6a-k	S18
Equations of correlation analyses and summary of used substituent parameters	S44
Crystal data and structure refinement for compounds 4d, 6d, 6f, and 6i	S46

N-Benzoylpiperazine (3a)

Figure S1. Temperature-depended ¹H NMR spectrum of compound **3a** measured in CDCl₃.

N-(4-Methylbenzoyl)piperazine (3b)

7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 f1 (ppm)

Figure S3. Temperature-depended ¹H NMR spectrum of compound **3b** measured in DMSO-d₆.

N-(4-Methoxybenzoyl)piperazine (3c)

Figure S4. Temperature-depended ¹H NMR spectrum of compound 3c measured in CDCl₃.

Figure S6. Temperature-depended ¹H NMR spectrum of compound **3c** measured in DMSO-d₆.

N-(4-Fluorobenzoyl)piperazine (3d)

Figure S7. Temperature-depended ¹H NMR spectrum of compound 3d measured in CDCl₃.

Figure S8. Temperature-depended ¹H NMR spectrum of compound 3d measured in DMSO-d₆.

N-(4-Chlorobenzoyl)piperazine (3e)

Figure S9. Temperature-depended ¹H NMR spectrum of compound 3e measured in CDCl₃.

Figure S10. Temperature-depended ¹H NMR spectrum of compound 3e measured in DMSO-d₆.

N-(4-Bromobenzoyl)piperazine (3f)

Figure S11. Temperature-depended ¹H NMR spectrum of compound 3f measured in CDCl₃.

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 fl (ppm)

Figure S12. Temperature-depended ¹H NMR spectrum of compound 3f measured in DMSO-d₆.

N-(4-Iodobenzoyl)piperazine (3g)

7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 fl (ppm)

Figure S14. Temperature-depended ¹H NMR spectrum of compound 3g measured in DMSO-d₆.

N-(4-Nitrobenzoyl)piperazine (3h)

Figure S15. Temperature-depended ¹H NMR spectrum of compound 3h measured in CDCl₃.

Figure S16. Temperature-depended ¹H NMR spectrum of compound 3h measured in DMSO-d₆.

N-(3-Bromobenzoyl)piperazine (3i)

Figure S17. Temperature-depended ¹H NMR spectrum of compound **3i** measured in CDCl₃.

Figure 18. Temperature-depended ¹H NMR spectrum of compound 3i measured in DMSO-d₆.

N,N'-Bisbenzoylpiperazine (4a)

Figure S19. Temperature-depended ¹H NMR spectrum of compound 4a measured in CDCl₃.

Figure S20. Temperature-depended ¹H NMR spectrum of compound 4a measured in DMSO-d₆.

N,N'-Bis-(4-methylbenzoyl)piperazine (4b)

Figure S21. Temperature-depended ¹H NMR spectrum of compound 4b measured in CDCl₃.

7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 f1(ppm)

Figure S22. Temperature-depended ¹H NMR spectrum of compound 4b measured in DMSO-d₆.

N,N'-Bis-(4-methoxybenzoyl)piperazine (4c)

Figure S23. Temperature-depended ¹H NMR spectrum of compound 4c measured in CDCl₃.

Figure S24. Temperature-depended ¹H NMR spectrum of compound 4c measured in DMSO-d₆.

N,N'-Bis-(4-fluorobenzoyl)piperazine (4d)

N,N'-Bis-(4-chlorobenzoyl)piperazine (4e)

Figure S26. Temperature-depended ¹H NMR spectrum of compound 4e measured in CDCl₃.

Figure S29. Temperature-depended ¹H NMR spectrum of compound 4e measured in DMSO-d₆.

N,N'-Bis-(4-bromobenzoyl)piperazine (4f)

N,N'-Bis-(4-iodobenzoyl)piperazine (4g)

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 1.7 1.6 1.5 1.4 1.3 1.2 1.1 fl (ppm)

Figure S30. Temperature-depended ¹H NMR spectrum of compound 4g measured in CDCl₃.

N-Benzoyl-*N'*-(4-nitrophenyl)piperazine (6a)

Figure S31. ¹H NMR spectrum of compound 6a measured in CDCl₃.

Figure S32. ¹³C NMR spectrum of compound 6a measured in CDCl₃.

Figure S33. H-H-COSY spectrum of compound 6a measured in CDCl₃.

Figure S34. HSQC spectrum of compound 6a measured in CDCl₃.

Figure S35. Temperature-depended ¹H NMR spectrum of compound 6a measured in CDCl₃.

N-(4-Methylbenzoyl)-*N*'-(4-nitrophenyl)piperazine (6b)

Figure S36. ¹H NMR spectrum of compound 6b measured in CDCl₃.

Figure S37. ¹³C NMR spectrum of compound 6b measured in CDCl₃.

Figure S38. Temperature-depended ¹H NMR spectrum of compound 6b measured in CDCl₃.

N-(4-Methoxybenzoyl)-*N*'-(4-nitrophenyl)piperazine (6c)

Figure S39. ¹H NMR spectrum of compound 6c measured in CDCl₃.

Figure S40. ¹³C NMR spectrum of compound 6c measured in CDCl₃.

Figure S41. Temperature-depended ¹H NMR spectrum of compound 6c measured in CDCl₃.

N-(4-Fluorobenzoyl)-N'-(4-nitrophenyl)piperazine (6d)

Figure S42. ¹H NMR spectrum of compound 6d measured in CDCl₃.

Figure S43. ¹³C NMR spectrum of compound 6d measured in CDCl₃.

Figure S44. Temperature-depended ^{1}H NMR spectrum of compound 6d measured in CDCl₃.

N-(4-Bromobenzoyl)-*N*'-(4-nitrophenyl)piperazine (**6f**)

Figure S45. ¹H NMR spectrum of compound 6f measured in CDCl₃.

Figure S46. ¹³C NMR spectrum of compound 6f measured in CDCl₃.

Figure S47. Temperature-depended ¹H NMR spectrum of compound 6f measured in CDCl₃.

N-(4-Nitrobenzoyl)-N'-(4-nitrophenyl)piperazine (6h)

Figure S48. ¹H NMR spectrum of compound 6h measured in CDCl₃.

Figure S49. ¹³C NMR spectrum of compound 6h measured in CDCl₃.

Figure S50. Temperature-depended ¹H NMR spectrum of compound 6h measured in CDCl₃.

11 (ppin)

Figure S51. Temperature-depended ¹H NMR spectrum of compound 6h measured in DMSO-d₆.

N-(3-Bromobenzoyl)-N'-(4-nitrophenyl)piperazine (6i)

Figure S53. ¹³C NMR spectrum of compound 6i measured in CDCl₃.

Figure S54. Temperature-depended ¹H NMR spectrum of compound 6i measured in CDCl₃.

N-(2-Bromobenzoyl)-*N*'-(4-nitrophenyl)piperazine (6j)

Figure S55. ¹H NMR spectrum of compound 6j measured in acetonitrile-d₃.

Figure S56. ¹H NMR spectrum of compound 6j measured in acetone-d₆.

Figure S57. ¹H NMR spectrum of compound 6j measured in methanol-d₄.

Figure S58. ¹H NMR spectrum of compound 6j measured in benzene-d₆.

Figure S59. ¹H NMR spectrum of compound 6j measured in CDCl₃.

Figure S60. ¹³C NMR spectrum of compound 6j measured in CDCl₃.

Figure S61. H-H-COSY spectrum of compound 6j measured in CDCl₃.

Figure S62. HSQC spectrum of compound 6j measured in CDCl₃.

Figure S63. Temperature-depended ¹H NMR spectrum of compound 6j measured in CDCl₃.

Figure S64. ¹H NMR spectrum of compound 6j measured in DMSO-d₆.

Figure S65. H-H-COSY spectrum of compound 6j measured in DMSO-d₆.

Figure S66. Temperature-depended ¹H NMR spectrum of compound 6j measured in DMSO-d₆.

N-(2-Nitrobenzoyl)-N'-(4-nitrophenyl)piperazine (6k)

Figure S67. ¹H NMR spectrum of compound 6k measured in CDCl₃.

Figure S68. ¹H NMR spectrum of compound 6k measured in CDCl₃.

Figure S69. Temperature-depended ¹H NMR spectrum of compound 6k measured in CDCl₃.

Figure S70. ¹H NMR spectrum of compound 6j measured in DMSO-d₆.

Figure S71. Temperature-depended ¹H NMR spectrum of compound 6k measured in DMSO-d₆.

Figure S72. Temperature-dependent ¹H NMR spectra of fluorine compound 7 measured in CDCl₃.

Figure S74. Temperature-dependent ¹H NMR spectra of fluorine compound 8 measured in CDCl₃.

Series 3: σ_p in DMSO-d ₆							
Amine	ΔG^{\ddagger} = 4.86 σ_{p} + 61.79	n = 6; s = 0.516; r = 0.956; R ² = 0.914					
Amide	$\Delta G^{\dagger} = 5.90\sigma_{p} + 61.45$	n = 7; s = 1.062; r = 0.873; R ² = 0.762					
Series 3: σ_p^{-1} in DMSO-d ₆							
Amine	$\Delta G^{\ddagger} = 3.16\sigma_{p}^{-} + 61.96$	n = 6; s = 0.460; r = 0.965; R ² = 0.932					
Amide	$\Delta G^{\ddagger} = 3.55 \sigma_{p}^{-} + 61.79$	n = 7; s = 1.216; r = 0.830; R ² = 0.688					
Series 3: σ_{p+} in DMSO-d ₆							
Amine	$\Delta G^{\ddagger} = 4.14\sigma_{p}^{+} + 62.25$	n = 6; s = 0.576; r = 0.945; R ² = 0.893					
Amide	$\Delta G^{\ddagger} = 5.07 \sigma_{p}^{+} + 62.02$	n = 7; s = 1.037; r = 0.879; R ² = 0.773					
Series 3: σ_p in CDCl ₃							
Amine	$\Delta G^{\ddagger} = 4.78\sigma_{p} + 60.72$	n = 9; s = 0.983; r = 0.851; R ² = 0.724					
Amide	$\Delta G^{\ddagger} = 4.73\sigma_{p} + 60.52$	n = 8; s = 0.998; r = 0.750; R ² = 0.562					
Series 3: σ_p^{-1} in CDCl ₃							
Amine	$\Delta G^{\ddagger} = 3.27 \sigma_{p}^{-} + 60.78$	n = 9; s = 1.009; r = 0.842; R ² = 0.709					
Amide	$\Delta G^{\ddagger} = 4.48 \sigma_{p}^{-} + 60.54$	n = 8; s = 1.019; r = 0.737; R ² = 0.0544					
Series 3: σ_p^+ in CDCl ₃							
Amine	$\Delta G^{\ddagger} = 3.76 \sigma_{p}^{+} + 61.31$	n = 9; s = 0.679; r = 0.932; R ² = 0.868					
Amide	$\Delta G^{\ddagger} = 3.46 \sigma_{p}^{+} + 61.06$	n = 8; s = 0.695; r = 0.888; R ² = 0.788					
Series 6: σ_p in (CDCI ₃						
Amine	ΔG^{\ddagger} = 4.24 σ_{p} + 58.74	n = 7; s = 0.888; r = 0.882; R ² = 0.779					
Amide	ΔG^{\ddagger} = 4.67 σ_{p} + 58.90	n = 7; s = 0.982; r = 0.882; R ² = 0.777					
Series 6: σ_p^{-1} in CDCl ₃							
Amine	$\Delta G^{\ddagger} = 2.81\sigma_{p}^{-} + 58.77$	n = 7; s = 0.991; r = 0.851; R ² = 0.724					
Amide	$\Delta G^{\ddagger} = 3.18\sigma_{p}^{-} + 58.90$	n = 7; s = 1.018; r = 0.872; R ² = 0.761					
Series 6: σ_p^+ in CDCl ₃							
Amine	$\Delta G^{\ddagger} = 3.32 \sigma_{p}^{+} + 59.28$	n = 7; s = 0.524; r = 0.961; R ² = 0.923					
Amide	$\Delta G^{\ddagger} = 3.59 \sigma_{p}^{+} + 59.50$	n = 7; s = 0.705; r = 0.941; R ² = 0.885					

The following substituent parameters were used for correlation analyses.¹

σ_m: 0.39 (3-Br)

 $\sigma_{p}:$ -0.17 (CH_3), -0.27 (OCH_3), 0.06 (F), 0.23 (Cl), 0.23 (Br), 0.18 (I) and 0.78 (NO_2)

 $\sigma_{p}^{-}\!\!:$ -0.17 (CH_3), -0.26 (OCH_3), -0.03 (F), 0.19 (Cl), 0.25 (Br), 0.27 (I) and 1.27 (NO_2)

 $\sigma_{p}{}^{*}\!\!:$ -0.31 (CH_3), -0.78 (OCH_3), -0.07 (F), 0.11 (Cl), 0.15 (Br), 0.14 (I) and 0.78 (NO_2)

1 C. Hansch and A. Leo, *Exploring QSAR Fundamentals and Applications in Chemistry and Biology*; American Chemical Society, Washington, 1995; p 1-24 ff.

Compound	4d	6d	6f	6 i
Formula	$C_{18}H_{16}F_2N_2O_2$	$C_{17}H_{16}FN_3O_3$	$C_{17}H_{16}BrN_3O_3$	$C_{17}H_{16}BrN_3O_3$
Formula weight (g·mol⁻¹)	330.33	329.33	390.24	390.24
Temperature (K)	123	123	296	123
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n	C2/c	P2 ₁ /c
Unit cell dimensions:				
<i>a</i> (Å)	6.5750(4)	9.7759(6)	17.379(2)	7.842(3)
<i>b</i> (Å)	10.4009(7)	14.3497(9)	11.788(2)	25.300(9)
<i>c</i> (Å)	11.2622(7)	10.452(2)	17.806(2)	8.024(1)
β (°)	101.313(2)	101.452(2)	116.727(7)	94.67(1)
Volume (ų) <i>, Z</i>	755.21(8), 2	1497.2(2), 4	3257.8(7)	1586.7(9)
Data/restraints/param.	6803/0/109	7230/0/218	6516/0/217	3910/0/335
Measured reflections	44151	74137	33067	35509
$artheta_{max}$ (°)	23.4	36.4	31.4	27.2
GoF on F ²	1.07	1.08	1.00	1.08
R1 [$l > 2\sigma(l)$]	0.049	0.048	0.039	0.060
wR2 (all data)	0.165	0.129	0.096	0.107
Larg. diff. peak/hole (e·Å³)	0.63/-0.37	0.51/-0.28	0.55/-0.56	0.82/-9,65

Table S2. Crystal data and structure refinement for compounds 4d, 6d, 6f, and 6i.