Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Fig.1 The response of Pd-loaded SnO₂ nanospheres sensor to detect various H_2S gas concentrations on 10 ppb to 200 ppm at optimal temperature of 150 °C. The insert is the response of Pd-loaded SnO₂ nanospheres sensor to detect H_2S gas concentrations on 10 ppb to 40 ppb at optimal temperature of 150 °C.

Fig.2 The response of Pd-loaded SnO_2 nanospheres sensor to detect 1 ppm and 5 ppm H_2S gas concentrations on at working temperature of 200 °C.

To test the Pd-loaded SnO_2 gas sensors characteristic of repeatability, we repeat the experiments for 3-6 times at 1 ppm and 5 ppm in three circle and responses are similar in Fig.2

Fig.3 Reproducibility and repeatability characteristic of Pd-loaded SnO₂ sensors to 1 ppm H₂S. 9 devices

were tested at different days.

Device Characteristic	1	2	3	4	5	6	7	8	9
Response average	3.03	2.57	1.03	5.14	0.48	3.73	4.96	0.88	2.84
Delta response	1.1	0.52	0.63	4.62	0.31	1.7	3.96	0.7	0.73

Table 1. Comparison in average and delta of response values of 9 Pd-loaded SnO₂ devices to 1 ppm H₂S.

We have investigated more than 20 Pd-loaded SnO_2 sensors. The repeatability and reproducibility were test for 9 Pd-loaded SnO_2 sensors with exactly the preparation method. Devices were exposed to 1 ppm H₂S at 200 °C at different days and the result is exhibited in Fig.3. Different colors represent repetitions at different day in the same experimental environment. The performance is similar between different devices. In large portion of devices, the performance drops after the first run and tend to be stable. Although there are cases responses are higher in the later tests. The repeatability was listed in table 1 for nine devices also.

Fig. 4 Reproducibility characteristic of Pd-loaded SnO_2 sensors to 1 ppm H_2S at different durations.

Long-term stability of the Pd-loaded SnO_2 sensors was investigated over 234 days for two devices (Fig.4). These data show without extensive exposing to corrosive gas, the samples kept their sensing ability. The variation is probably due to environmental changes, not due to sample changing.