

## **Electronic Supplementary Information**

Fig. S1 IR spectra of the complexes 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6(f).



**Fig. S2a-f** PXRD patterns for the final residues of complexes **1-6** after thermal analyses [**1'-6'** are the experimental data, PXRD patterns of  $Tb_4O_7$ ,  $Eu_2O_3$  and  $Sm_2O_3$  are available in Powder Diffraction File (JCPDS NO. 32-1286, 34-0392 and 42-1461)].

Table S1. Crystal Data and Structure Refinements for Complexes 1-6

|                   | Complex 1               | Complex 2                | Complex 3                | Complex 4                                                        | Complex 5                | Complex 6                |  |
|-------------------|-------------------------|--------------------------|--------------------------|------------------------------------------------------------------|--------------------------|--------------------------|--|
| Formula           | C40H22N9O7Tb            | C46H26N9O6Eu             | C46H26N9O6Sm             | C <sub>24</sub> H <sub>15</sub> N <sub>4</sub> O <sub>6</sub> Eu | $C_{24}H_{15}N_4O_6Tb$   | $C_{26}H_{19}N_4O_6Tb$   |  |
| Formula mass      | 899.58                  | 952.72                   | 951.11                   | 607.36                                                           | 614.32                   | 642.37                   |  |
| Crystal system    | monoclinic              | triclinic                | triclinic                | triclinic                                                        | triclinic                | triclinic                |  |
| Space group       | $P2_{1}/n$              | Pī                       | Pī                       | Pī                                                               | Pī                       | Pī                       |  |
| Crystal size (mm) | 0.80 x 0.130 x<br>0.110 | 0.610 x 0.320 x<br>0.120 | 0.276 x 0.243 x<br>0.198 | 0.231 x 0.195<br>x 0.152                                         | 0.230 x 0.100 x<br>0.090 | 0.210 x 0.170 x<br>0.110 |  |
| a (Å)             | 12.2247(5)              | 10.5943(18)              | 10.6094(6)               | 9.434(4)                                                         | 9.425(3)                 | 9.6004(5)                |  |

| <i>b</i> (Å)       | 17.6302(7)                        | 13.708(2)                         | 13.7009(7)                        | 9.625(3)                          | 9.631(3)                          | 11.0929(6)                        |
|--------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| <i>c</i> (Å)       | 16.1153(7)                        | 14.497(2)                         | 14.5285(7)                        | 12.739(4)                         | 12.716(3)                         | 12.7617(7)                        |
| α (°)              | 90                                | 78.663(3)                         | 78.7380(10)                       | 107.69(4)                         | 107.168(4)                        | 68.4090(10)                       |
| β (°)              | 98.1080(10)                       | 80.397(3)                         | 80.4200(10)                       | 92.975(7)                         | 93.018(5)                         | 71.4530(10)                       |
| γ (°)              | 90                                | 68.379(3)                         | 68.3690(10)                       | 100.613(9)                        | 100.793(4)                        | 74.6470(10)                       |
| $V(Å^3)$           | 3438.5(2)                         | 1908.7(6)                         | 1914.96(17)                       | 1076.0(7)                         | 1076.1(5)                         | 1181.14(11)                       |
| Ζ                  | 4                                 | 2                                 | 2                                 | 2                                 | 2                                 | 2                                 |
| Goodness-of-fit on | 1.017                             | 1.067                             | 1.030                             | 1.019                             | 1.044                             | 1.059                             |
| $F^2$              |                                   |                                   |                                   |                                   |                                   |                                   |
| Reflns             | 18552 / 6715                      | 10506 / 7380                      | 10623 / 7452                      | 7423/ 4743                        | 5842 / 4184                       | 6063 / 4281                       |
| collected/unique   |                                   |                                   |                                   |                                   |                                   |                                   |
| $\theta$ Range (°) | 1.72 to 25.35                     | 1.44 to 26.00                     | 1.44 to 26.05                     | 1.69 to 27.18                     | 1.69 to 26.08                     | 1.77 to 25.35                     |
| $R(I>2\sigma(I))$  | $R_1 = 0.0316$<br>$wR_2 = 0.0630$ | $R_1 = 0.0348$<br>$wR_2 = 0.0749$ | $R_1 = 0.0391$<br>$wR_2 = 0.0768$ | $R_1 = 0.0550$<br>$wR_2 = 0.0955$ | $R_1 = 0.0509$<br>$wR_2 = 0.1121$ | $R_1 = 0.0227$<br>$wR_2 = 0.0525$ |
| R (all data)       | $R_1 = 0.0493$                    | $R_1 = 0.0433$                    | $R_1 = 0.0511$                    | $R_1 = 0.0795$                    | $R_1 = 0.0654$                    | $R_1 = 0.0260$                    |
|                    | $wR_2 = 0.0694$                   | $wR_2 = 0.0789$                   | $wR_2 = 0.0824$                   | $wR_2 = 0.1069$                   | $wR_2 = 0.1213$                   | $wR_2 = 0.0543$                   |
|                    |                                   |                                   |                                   |                                   |                                   |                                   |

Table S2. Selected bond lengths and bond angles for 1-6

| 1            |          | 2                     |          | 3            |          | 4            |          | 5            |          | 6            |          |
|--------------|----------|-----------------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|----------|
| Bond lengths | Å        | Bond lengths          | Å        | Bond lengths | Å        | Bond lengths | Å        | Bond lengths | Å        | Bond lengths | Å        |
| Tb-O(1)#2    |          | Eu-O(1)#1             | 2.664(3) | Sm-O(1)#1    | 2.477(3) | Eu-O(1)      | 2.412(5) | Tb-O(1)#3    | 2.363(5) | Tb-O(1)#6    | 2.377(2) |
|              | 2.506(3) |                       |          |              |          |              |          |              |          |              |          |
| Tb-O(2)#2    | 2.590(3) | Eu-O(2) <sup>#1</sup> | 2.421(3) | Sm-O(2)#1    | 2.595(3) | Eu-O(2)#2    | 2.371(5) | Tb-O(2)      | 2.386(5) | Tb-O(2)#5    | 2.378(2) |
| Tb-O(3)#1    | 2.441(3) | Eu-O(3)#2             | 2.461(2) | Sm-O(3)#2    | 2.667(3) | Eu-O(3)      | 2.607(5) | Tb-O(3)      | 2.455(6) | Tb-O(3)      | 2.408(2) |
| Tb-O(4)#1    | 2.481(3) | Eu-O(4)#2             | 2.585(2) | Sm-O(4)#2    | 2.438(3) | Eu-O(4)      | 2.516(5) | Tb-O(4)      | 2.408(6) | Tb-O(3)#1    | 2.468(2) |
| Tb-O(5)      | 2.486(3) | Eu-O(5)               | 2.523(3) | Sm-O(5)      | 2.539(3) | Eu-O(5)#3    | 2.462(5) | Tb-O(5)#5    | 2.605(6) | Tb-O(4)#1    | 2.646(2) |
| Tb-O(6)      | 2.500(3) | Eu-O(6)               | 2.495(3) | Sm-O(6)      | 2.505(3) | Eu-O(4)#2    | 2.443(5) | Tb-O(6)#4    | 2.427(5) | Tb-O(5)      | 2.404(2) |
| Tb-N(1)      | 2.598(3) | Eu-N(1)               | 2.569(3) | Sm-N(1)      | 2.684(3) | Eu-O(6)#3    | 2.427(5) | Tb-O(6)#5    | 2.483(6) | Tb-O(6)      | 2.424(3) |
| Tb-N(2)      | 2.646(3) | Eu-N(2)               | 2.689(3) | Sm-N(2)      | 2.634(3) | Eu-N(1)#4    | 2.554(5) | Tb-N(3)#2    | 2.558(6) | Tb-N(1)      | 2.535(3) |
| Tb-N(5)      | 2.539(3) | Eu-N(5)               | 2.676(3) | Sm-N(5)      | 2.583(3) | Eu-N(2)#4    | 2.574(6) | Tb-N(4)#2    | 2.532(6) | Tb-N(2)      | 2.540(3) |
| Tb-N(6)      | 2.589(3) | Eu-N(6)               | 2.626(3) | Sm-N(6)      | 2.711(3) |              |          |              |          |              |          |

| Bond angles    | 0        | Bond angles      | 0         | Bond angles                      | 0         | Bond angles    | 0          | Bond angles    | 0          | Bond angles        | 0         |
|----------------|----------|------------------|-----------|----------------------------------|-----------|----------------|------------|----------------|------------|--------------------|-----------|
| O(1)#2-Tb-N(5) | 78.69(9) | O(1)#1-Eu-N(5)   | 75.12(9)  | O(1)#1-Sm-N(5)                   | 78.21(9)  | O(2)#2-Eu-O(1) | 139.11(17) | O(1)#3-Tb-O(2) | 139.65(19) | O(1)#6-Tb-         | 139.87(8) |
|                |          |                  |           |                                  |           |                |            |                |            | O(2) <sup>#5</sup> |           |
| O(3)#1-Tb-     | 105.03(8 | O(2)#1-Eu-O(3)#2 | 112.12(9) | $O(2)^{\#_1}$ -Sm- $O(3)^{\#_2}$ | 67.22(9)  | O(1)-Eu-O(3)   | 67.13(17)  | O(1)#3-Tb-O(3) | 110.8(2)   | O(1)#6-Tb-         | 70.98(9)  |
| O(2)#2         | )        |                  |           |                                  |           |                |            |                |            | O(3)               |           |
| O(4)#1-Tb-O(5) | 74.73(9) | O(5)-Eu-O(4)#2   | 140.17(8) | O(4)#2-Sm-O(5)                   | 95.00(10) | O(1)-Eu-O(6)#2 | 75.58(17)  | O(1)#3-Tb-     | 70.62(19)  | O(1)#6-Tb-         | 115.43(9) |
|                |          |                  |           |                                  |           |                |            | O(6)#4         |            | O(6)               |           |
| O(5)-Tb-O(6)   | 50.77(9) | O(6)-Eu-O(5)     | 52.01(9)  | O(6)-Sm-O(5)                     | 51.80(10) | O(2)#2-Eu-O(4) | 69.66(17)  | O(2)-Tb-O(4)   | 133.13(19) | O(2)#5-Tb-         | 67.42(8)  |
|                |          |                  |           |                                  |           |                |            |                |            | O(4)#1             |           |
| O(3)#1-Tb-N(5) | 68.86(9) | O(3)#2-Eu-N(5)   | 68.44(9)  | N(5)-Sm-O(3)#2                   | 143.49(9) | O(3)-Eu-O(4)   | 50.45(14)  | O(4)-Tb-O(3)   | 53.44(19)  | O(3)-Tb-           | 119.12(7) |
|                |          |                  |           |                                  |           |                |            |                |            | O(4)#1             |           |
| O(5)-Tb-N(5)   | 144.92(1 | O(5)-Eu-N(5)     | 103.86(9) | O(5)-Sm-N(5)                     | 81.47(10) | O(3)-Eu-O(5)#3 | 137.59(17) | O(3)-Tb-O(5)#5 | 137.58(18) | O(5)-Tb-O(3)       | 96.04(9)  |
|                | 0)       |                  |           |                                  |           |                |            |                |            |                    |           |
| O(6)-Tb-N(6)   | 74.43(10 | O(6)-Eu-N(6)     | 76.27(9)  | O(6)-Sm-N(6)                     | 108.29(10 | O(6)#2-Eu-O(3) | 142.50(17) | O(6)#5-Tb-     | 50.83(17)  | O(5)-Tb-O(6)       | 53.65(9)  |
|                | )        |                  |           |                                  | )         |                |            | O(5)#5         |            |                    |           |
| N(5)-Tb-N(6)   | 64.46(10 | N(6)-Eu-N(5)     | 61.97(9)  | N(5)-Sm-N(6)                     | 61.90(10) | O(3)-Eu-N(2)#4 | 70.03(17)  | O(3)-Tb-N(3)#2 | 120.11(19) | O(3)-Tb-N(1)       | 148.01(9) |
|                | )        |                  |           |                                  |           |                |            |                |            |                    |           |
| N(1)-Tb-N(2)   | 62.16(9) | N(1)-Eu-N(2)     | 62.01(10) | N(2)-Sm-N(1)                     | 61.62(10) | O(1)-Eu-N(1)#4 | 83.28(17)  | O(1)#3-Tb-     | 137.25(19) | O(1)#6-Tb-         | 137.21(9) |
|                |          |                  |           |                                  |           |                |            | N(4)#2         |            | N(2)               |           |
| N(1)-Tb-N(9)   | 85.54(11 | N(1)-Eu-N(5)     | 112.80(10 | N(5)-Sm-N(1)                     | 113.07(10 | N(1)#4-Eu-     | 64.12(19)  | N(4)#2-Tb-     | 64.80(19)  | N(1)-Tb-N(2)       | 64.81(9)  |
|                | )        |                  | )         |                                  | )         | N(2)#4         |            | N(3)#2         |            |                    |           |

Symmetry transformations used to generate equivalent atoms: 1: #1 -x,-y+1,-z+2; #2 x-1/2,-y+1/2,z-1/2. 2: #1 -x+2,-y,-z+2; #2 -x+1,-y+1,-z+1. 3: #1 -x+1,y,-z+2; #2 -x,-y+1,-z+1. 4: #2 -x+2,-y+2,-z+2; #3 x+1,y,z; #4 -x+2,-y+2,-z+1. 5: #2 -x+2,-y+1,-z+1; #3 -x+2,-y+1,-z; #4 -x+1,-y+1,-z; #5 x+1,y,z. 6: #1 x+2,-y,-z+2; #5 -x+2,-y,-z+1; #6 x,y,z+1.