Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

CONTENTS:

1. Preparation of Various Diazooxindoles	2
2. General Procedure for catalytic Asymmetric Intermolecular Cyclopropanation of	Diazooxindoles with
Olefins	
3. Analytical Date for Asymmetric Cyclopropanation Reaction Products.	
4. Ssynthesis of Bioactive Compound.	
5. X-ray Crystal Structure	
6. NMR Spectral Data	
7. HPLC Spectral Data	
8. Calculation Method	
9. Calculation result	
10. Plausible Mechanism	
11. Reference	

General: All reactions were performed under an atmosphere of argon unless otherwise noted. Dichloromethane (CH₂Cl₂) was purchased from Kanto Chemical Co., Inc.. All reactions were monitored by thin layer chromatography (TLC), glass plates pre-coated with silica gel Merck KGaA 60 F₂₅₄, layer thickness 0.2 mm. The products were visualized by irradiation with UV light or by treatment with a solution of phosphomolybdic acid or by treatment with a solution of *p*-anisaldehyde. Flash column chromatography was performed using silica gel (Merck, Art. No. 7734). ¹H NMR (500 MHz, 400 MHz) and ¹³C NMR (125 MHz, 100 MHz) spectra were recorded on JEOL JNM-ECX 500, JEOL JNM-ECS 400 spectrometer. Chemical shifts are reported as δ values (ppm) relative to internal tetramethylsilane (0.00 ppm) in CDCl₃. Optical rotations were performed with a JASCO P-1030 polarimeter at the sodium D line (1.0 mL sample cell). Enantiomeric excesses were determined by high-performance liquid chromatography (HPLC) analyses with a JASCO GULLIVER using Daicel CHIRALPAK or CHIRALCEL columns. DART mass (positive mode) analyses were performed on a LC-TOF JMS-T100LP.

1. Preparation of Various Diazooxindoles

Diazooxindoles, (1a¹, 1b², 1c³, 1d², 1e², 1f⁴, 1g^{2,4}, and 1h⁵) were synthesized by following the literature [1]-[5]. **3-Diazo-1-ethylindolin-2-one (1c)**

1-Ethylindoline-2, 3-dione (155.9 mg, 0.89 mmol, 1 equiv.) and tosylhydrazine (182.5 mg, 0.98 mmol, 1.1 equiv.) were dissolved in MeOH (5 mL). The reaction mixture was refluxed for 2 h and then allowed to reach room temperature and the solid was filtered off. The residue was suspended in THF (5 mL) and treated with 0.2M NaOH (8.9 mL, 1.8 mmol) water solution at room temperature. The reaction mixture was stirred for 2 h, then neutralized by addition of dry-ice, diluted with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give **1c** as red oil (88% yield, 146.6 mg, 0.780 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.16 (m, 2H), 7.08 (t, J = 7.64 Hz, 1H), 6.95 (d, J = 8.03 Hz, 1H), 3.88 (q, J = 7.13 Hz, 2H, -NC**H**₂CH₃), 1.30 (t, J = 7.26 Hz, 3H, -CH₂C**H**₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.55 (-NC=O), 133.63, 125.49, 121.97, 118.47, 117.03, 108.82, 35.52, 13.41 ppm. HRMS (DART) calcd for C₁₇H₁₆NO [M+H]⁺: 188.0823 found: 188.0823.

5-Bromo-3-diazo-1-methylindolin-2-one (1f)

5-Bromo-1-methylindoline-2, 3-dione (504.13 mg, 2.1 mmol, 1 equiv.) and tosylhydrazine (430.19 mg, 2.31 mmol, 1.1 equiv.) were dissolved in MeOH (15 mL). The reaction mixture was refluxed for 2 h and then allowed to reach room temperature and the solid was filtered off. The residue was suspended in THF (20 mL) and treated with 0.2M NaOH (20 mL, 4.2 mmol) water solution at room temperature. The reaction mixture was stirred for 2 h, then neutralized by addition of dry-ice, diluted with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give **1f** as red solid (28% yield, 148.7 mg, 0.59 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.23 (m, 2H), 6.82–6.73 (m, 1H), 3.30 (s, 3H, -NC**H**₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.16 (-NC=O), 133.51, 128.30, 120.96, 118.66, 114.63, 109.92, 27.03 ppm. HRMS (DART) calcd for C₉H₇BrN₃O [M+H]⁺: 251.9772 found: 251.9772.

6-Chloro-3-diazo-1-methylindolin-2-one (1g)

6-Chloro-1-methylindoline-2, 3-dione (154.5 mg, 0.8 mmol, 1 equiv.) and tosylhydrazine (134.4 mg, 0.87 mmol, 1.1 equiv.) were dissolved in MeOH (5 mL). The reaction mixture was refluxed for 4 h and then allowed to reach room temperature and the solid was filtered off. The residue was suspended in THF (5 mL) and treated with 0.2M NaOH water solution (7.9 mL, 1.6 mmol) at room temperature. The reaction mixture was stirred for 1 h, then neutralized by addition of dry-ice, diluted with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give **1g** as pale-orange solid (72% yield, 118.1 mg, 0.58 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.13–7.05 (m, 2H), 6.93 (d, *J* = 1.53 Hz, 1H), 3.32 (s, 3H, -NCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 166.85 (-NC=O), 135.53, 131.42, 122.19, 118.95, 115.14, 109.47, 27.01 ppm. HRMS (DART) calcd for C₁₇H₁₆CINO [M+H]⁺: 208.0277 found: 208.0277

2. General Procedure for catalytic Asymmetric Intermolecular Cyclopropanation of Diazooxindoles with Olefins.

The solution of diazooxindole (0.2 mmol) in toluene (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene (2 mL) for 2 min under argon atmosphere at 0 °C. After the addition completed, the reaction mixture was then stirred for 24 h at 0 °C. The progress of the reaction was monitored by TLC. Upon completion, solvent was removed and residue was purified by column chromatography on silica gel eluted with EtOAc/*n*-Hexane to give desired product. The trans/cis ratio was determined from the crude ¹H NMR spectra, and ee value was determined by chiral HPLC analysis.

3. Analytical Date for Asymmetric Cyclopropanation Reaction Products.

(1*R*,2*S*)-1'-Methyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3a)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene 2a (104.2 mg, 1mmol) and 3-diazo-1-methylindolin-2-one 1a (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give 3a in 94% yield as

red oil (46.9 mg, 0.188 mmol), *trans/cis* = 94:6, 96% *trans* ee. $[\alpha]^{26.5}_{D} = -100.6$ (c 1.0, acetone). ¹H NMR (500

MHz, CDCl₃) δ 7.34–7.22 (m, 3H), 7.21–7.17 (m, 2H), 7.14 (td, *J* = 7.84, 1.15 Hz, 1H), 6.86 (d, *J* = 7.64 Hz, 1H) 6.68 (td, J = 7.64, 0.76 Hz, 1H), 5.96 (d, J = 7.26 Hz, 1H), 3.34 (t, J = 8.79 Hz, 1H, -CH (cyclopropane)), 3.32 (s, 3H, -NCH₃) 2.18 (dd, J = 9.17, 4.59 Hz, 1H, -CHBH (cyclopropane)), 1.99 (dd, J = 8.03, 4.59 Hz, 1H, -CHHa (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.55 (-NC=O), 143.90, 135.25, 130.01, 128.45, 127.59, 127.46, 126.66, 121.56, 120.75, 107.86, 35.89, 33.37, 26.73, 22.53 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 19:1, Flow rate = 1.0 mL/min, tR = 8.6 min (major product), tR = 11.0 min (minor product). HRMS (DART) calcd for $C_{17}H_{16}NO$ [M+H]⁺: 250.1231 found: 250.1231.

(1*R*,2*S*)-2-Phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3b)

Ph 3b

Ru(II)-Pheox 6e (0.002 mmol) and olefins (1.0 mmol) in CH₂Cl₂ (2 mL) for 2 min under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene 2a (104.2 mg, 1 mmol)

The solution of diazooxindole (0.2 mmol) in CH₂Cl₂ (2 mL) was slowly added to a mixture of

and 3-diazoindolin-2-one 1b (31.8 mg, 0.2 mmol). CH₂Cl₂ was used as solvent. The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give 3b in 98% yield as red solid (46.1 mg, 0.196 mmol). trans/cis = 93:7, 92% trans ee. $[\alpha]^{24.8}$ = -89.4 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H, -NH), 7.38–7.23 (m, 3H), 7.20 (d, J = 6.88 Hz, 2H), 7.09 (td, J = 7.74, 0.89 Hz, 1H), 6.95 (d, J = 7.64 Hz, 1H), 6.67 (t, J = 7.45 Hz, 1H), 5.95 (d, J = 7.64 Hz, 1H), 3.36 (t, J = 8.60 Hz, 1H, -CH (cyclopropane)), 2.22 $(dd, J = 9.17, 4.59 \text{ Hz}, 1\text{H}, -CH\beta H (cyclopropane)), 2.03 (dd, J = 8.03, 4.59 \text{ Hz}, 1\text{H}, -CHH\alpha (cyclopropane)) ppm.$ ¹³C NMR (100 MHz, CDCl₃) δ 178.78 (-NC=O), 141.03, 135.08, 130.10, 128.54, 128.05, 127.60, 126.73, 121.61, 121.12, 109.74, 36.30, 33.83, 22.81 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 9/1, Flow rate = 1.0 mL/min, tR = 9.8 min (major product), tR = 14.0 min (minor product). HRMS (DART) calcd for C₁₆H₁₄NO [M+H]⁺: 236.1075 found: 236.1074.

(1R,2S)-1'-Ethyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3c)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene 2a (104.2 mg, 1 mmol) and 1-ethylindoline-2,3-dione 1c (37.4 mg, 0.2 mmol) The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give 3c in 94% yield as red solid (49.5 mg, 0.188 mmol). trans/cis = 97:3, 97% trans ee. $[\alpha]^{24.3}D = -72.3$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.22 (m, 3H), 7.18 (dd, J = 6.88, 1.15 Hz, 2H), 7.13 (td, J = 7.84, 1.15 Hz, 1H), 6.89 (d, J = 7.64 Hz, 1H), 6.67 (td, J = 7.55, 1.02 Hz, 1H), 5.96 (dd, J = 7.64, 0.76 Hz, 1H), 3.88 (q, J = 7.26 Hz, 2H, -NCH₂CH₃), 3.33 (t, J = 8.60 Hz, 1H, -CH (cyclopropane)), 2.18 (dd, J = 9.17, 4.59 Hz, 1H, -CH β H (cyclopropane)), 1.98 (dd, J = 8.03, 4.59 Hz, 1H, -CHHa (cyclopropane)), 1.33 (t, J = 7.26 Hz, 3H, -NCH₂CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ

176.11 (-NC=O), 143.02, 135.32, 130.05, 128.46, 127.87, 127.46, 126.60, 121.33, 120.93, 108.02, 35.90, 35.21, 33.34, 22.65, 13.15 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 7.9 min (major product), tR = 9.6 min (minor product). HRMS (DART) calcd for C₁₈H₁₈NO [M+H]⁺: 264.1388 found: 264.1389.

(1*R*,2*S*)-1'-Isopropyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3d)

This compound was prepared according to the typical procedure for asymmetric intermolecular Ph, cyclopropanation reaction of between styrene 2a (104.2)mg, 1 mmol) and 3-diazo-1-isopropylindolin-2-one **3d** (40.3 mg, 0.2 mmol). The reaction mixture was purified by ìPr 3d silica gel column chromatography with EtOAc/n-Hexane as an eluent to give 3d in 86% yield as red oil (47.7 mg, 0.172 mmol). trans/cis = 96:4, 95% trans ee. $[\alpha]^{24.3}D = -78.8$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, $CDCl_3$ δ 7.33–7.22 (m, 3H), 7.18 (d, J = 6.88 Hz, 2H), 7.11 (td, J = 7.64, 1.15 Hz, 1H), 7.04 (d, J = 7.64 Hz, 1H), 6.65 (t, J = 7.45 Hz, 1H), 5.96 (d, J = 7.26 Hz, 1H), 4.77 (hept, J = 6.88 Hz, 1H, -NCH(CH₃)₂), 3.32 (t, J = 8.51 Hz, 1H, -CH (cyclopropane)), 2.16 (dd, J = 9.17, 4.30 Hz, 1H, -CH β H (cyclopropane)), 1.96 (dd, J = 7.84, 4.30 Hz, 1H, -CHHa (cyclopropane)), 1.54 (t, J = 6.88 Hz, 6H. –NH (CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.14 (-NC=O), 142.52, 135.35, 130.10, 128.47, 128.17, 127.46, 126.33, 120.97, 109.68, 44.18, 36.16, 33.25, 22.93, 19.83, 19.81 ppm. The ee value was determined by HPLC analysis. Column (Chiral IE-3), UV 230 nm, eluent: Hexane/IPA = 100/1, Flow rate = 1.0 mL/min, tR = 32.7 min (major product), tR = 31.0 (minor product). HRMS (DART) calcd for C₁₉H₁₉NO [M]⁺: 277.1466 found: 277.1466.

(1R,2S)-1'-Benzyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3e)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene **2a** (104.2 mg, 1 mmol) and 1-benzyl-3-diazoindolin-2-one **1e** (52.7 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3e** in 97% yield as red solid (65.9 mg, 0.194 mmol). *trans/cis* = >99:1<, 98% *trans* ee. $[\alpha]^{25.1}_{\rm D}$ = -122.8 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.37–7.22 (m, 8H), 7.19 (d, *J* = 7.26 Hz, 2H), 7.02 (t, *J* = 7.84 Hz, 1H), 6.75 (d, *J* = 7.64 Hz, 1H), 6.64 (t, *J* = 7.64 Hz, 1H), 5.96 (d, *J* = 7.26 Hz, 1H), 5.06 (*J* = 15.67 Hz, 1H, -NCHHAr), 4.99 (d, *J* = 15.67 Hz, 1H, -NCHHAr), 3.41 (t, *J* = 8.60 Hz, 1H, -CH (cyclopropane)), 2.27 (dd, *J* = 9.17, 4.40 Hz, 1H, -CH β H (cyclopropane)), 2.04 (dd, *J* = 8.03, 4.40 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.68 (-NC=O), 143.03, 136.35, 135.20, 130.08, 128.89, 128.51, 127.66, 127.58, 127.53, 127.40, 126.61, 121.61, 120.86, 108.90, 44.29, 36.26, 33.34, 22.79 ppm. The ee value was determined by HPLC analysis. Column (Chiral IE-3), UV 230 nm, eluent: Hexane/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 17.1 min (major product), tR = 15.1 min (minor product). HRMS (DART) calcd for C₂₃H₂₀NO [M+H]⁺: 326.1544 found: 326.1549.

(1R,2S)-1'-Methyl-2-(o-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-one (3f)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 2-methylstyrene **2b** (118.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3f** in 92% yield as

red solid (48.5 mg, 0.184 mmol). *trans/cis* = 92:8, 95% *trans* ee. $[\alpha]^{23.9}_{D}$ = -110.3 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 7.64 Hz, 1H), 7.26–7.21 (m, 1H), 7.19 (t, *J* = 7.45 Hz, 1H), 7.14 (td, *J* = 7.84, 1.15 Hz), 7.02 (d, *J* = 7.64 Hz, 1H), 6.86 (d, *J* = 7.64 Hz, 1H), 6.64 (td, *J* = 7.64, 0.76 Hz, 1H), 5.84 (d, *J* = 7.64 Hz, 1H), 3.34 (s, 3H, -NCH₃), 3.14 (t, *J* = 8.60 Hz, 1H, -CH (cyclopropane)), 2.23 (dd, *J* = 9.17, 4.59 Hz, 1H, -CH β H (cyclopropane)), 2.03 (dd, *J* = 8.03, 4.59 Hz, 1H, -CHH α (cyclopropane)), 1.75 (s, 3H, Ar-CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.55 (-NC=O), 143.67, 139.29, 134.10 129.94, 128.72, 127.69, 127.50, 126.68, 125.89, 121.61, 119.92, 107.77, 35.08, 33.07, 26.79, 22.52, 19.20 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 8.1 min (major product), tR = 9.1 min (minor product). HRMS (DART) calcd for C₁₈H₁₈NO [M+H]⁺: 264.1388 found: 264.1386.

(1R,2S)-1'-Methyl-2-(m-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-one (3g)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 3-methylstyrene **2c** (118.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3g** in 80% yield as red solid (42.1 mg, 0.160 mmol). *trans/cis* = >99:1<, 99% *trans* ee. $[\alpha]^{24.2}D = -84.9$ (c 1.0,

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.19–7.12 (m, 2H), 7.06 (d, J = 6.88 Hz, 1H), 7.02 (s, 1H), 6.97 (d, J = 7.64 Hz, 1H), 6.87 (d, J = 7.64 Hz, 1H), 6.70 (td, J = 7.55, 0.88 Hz, 1H), 6.01 (d, J = 7.64 Hz, 1H), 3.33 (s, 3H, -N**CH**₃), 3.31 (t, J = 8.60 Hz, 1H, -**CH** (cyclopropane)), 2.30 (s, 3H, Ar-**CH**₃), 2.16 (dd, J = 9.17, 4.59 Hz, 1H, -**CH** β H (cyclopropane)), 1.99 (dd, J = 8.03, 4.59 Hz, 1H, -**CHH** α (cyclopropane)) ppm. ¹³C NMR δ (100 MHz, CDCl₃) 176.62 (-NC=O), 143.91, 138.06, 135.12, 130.74, 128.30, 128.23, 127.75, 126.99, 126.61, 121.59, 120.83, 107.84, 35.92, 33.41, 26.74, 22.62, 21.48 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 19/1, Flow rate = 1.0 mL/min, tR = 7.6 min (major product), tR = 8.7 min (minor product). HRMS (DART) calcd for C₁₈H₁₈NO [M+H]⁺: 264.1388 found: 264.1383.

(1R,2S)-1'-Methyl-2-(p-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-one (3h)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 4-methylstyrene **2d** (118.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3h** in 96% yield as red solid (50.6 mg, 0.192 mmol). *trans/cis* = >99:1<, 96% *trans* ee. $[\alpha]^{26.3}_{D}$ = -129.2 (c 1.0, CHCl₃). ¹H

NMR (500 MHz, CDCl₃) δ 7.15 (td, J = 7.74, 0.89 Hz, 1H), 7.09 (d, J = 8.41 Hz, 2H), 7.06 (d, J = 8.41, 2H), 6.86 (d, J = 7.64 Hz, 1H), 6.71 (t, J = 7.45 Hz, 1H), 6.00 (d, J = 7.64 Hz, 1H), 3.32 (s, 1H, -NCH₃), 3.30 (t, J = 8.60 Hz, 1H, -CH (cyclopropane)), 2.32 (s, 3H, Ar-CH₃), 2.17 (dd, J = 9.17, 4.20 Hz, 1H, -CH β H (cyclopropane)), 1.97 (dd, J = 8.03, 4.20 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.60 (-NC=O), 143.87, 137.07, 132.11, 129.82, 129.14, 127.73, 126.55, 121.54, 120.80, 107.79, 35.72, 33.38, 26.69, 22.64, 21.25 ppm. The ee value was determined by HPLC analysis. Column (Chiral IA-3), UV 230 nm, eluent: Hexane/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 6.6 min (major product), tR = 7.2 min (minor product). HRMS (DART) calcd for

C₁₈H₁₈NO [M+H]+: 264.1388 found: 264.1388.

(1R,2S)-2-(4-(Tert-butyl)phenyl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (3i)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 4-tert-butylstyrene **2e** (160.3 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3i** in 97% yield as red oil (59.3 mg, 0.194 mmol). *trans/cis* = >99:1<, 95% *trans* ee. $[\alpha]^{24.5}_{D} = -142.3$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.28 (m, 2H), 7.17–7.08 (m, 3H),

6.86 (d, J = 7.63 Hz, 1H), 6.69 (td, J = 7.63, 0.92 Hz, 1H), 6.00 (d, J = 7.63 Hz, 1H), 3.32 (s, 3H, -NCH₃), 3.29 (t, J = 8.55 Hz, 1H, -CH (cyclopropane)), 2.17 (dd, J = 9.16, 4.58 Hz, 1H, -CHβH (cyclopropane)), 1.98 (dd, J = 7.93, 4.58 Hz, 1H, -CHHa (cyclopropane)), 1.30 (s, 9H, Ar-(CH₃)₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.68 (-NC=O), 150.44, 143.92, 132.14, 129.64, 127.82, 126.58, 125.33, 121.52, 120.87, 107.80, 35.70, 34.62, 33.47, 31.43, 26.74, 22.72 ppm. The ee value was determined by HPLC analysis. Column (Chiral OJ-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 8.2 min (major product), tR = 10.7 min (minor product). HRMS (DART) calcd for C₂₁H₂₄NO [M+H]⁺: 306.1857 found: 305.1856.

(1R,2S)-1'-Methyl-2-(naphthalen-2-yl)spiro[cyclopropane-1,3'-indolin]-2'-one (3j)

The solution of diazooxindole (0.2 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) for 2 min under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 2-vinylnaphthalene **2f** (154.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg,

0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3j** in 83% yield as white solid (50 mg, 0.166 mmol). *trans/cis* = >99:1<, 96% *trans* ee. $[\alpha]^{24.9}_{D}$ = -359.5 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.84–7.77 (m, 2H), 7.74 (s, 1H), 7.69 (d, *J* = 8.41 Hz, 1H), 7.51–7.42 (m, 2H), 7.18 (dd, *J* = 8.41, 1.53 Hz, 1H), 7.10 (td, *J* = 7.64, 1.15 Hz, 1H), 6.85 (d, *J* = 8.03 Hz, 1H), 6.56 (t, *J* = 7.45 Hz, 1H), 5.94 (d, *J* = 7.64 Hz, 1H), 3.47 (t, *J* = 8.51 Hz, 1H, -CH (cyclopropane)), 3.33 (s, 3H, -NCH₃), 2.26 (dd, *J* = 9.17, 4.50 Hz, 1H, -CH β H (cyclopropane)), 2.13 (dd, *J* = 7.84 , 4.50 Hz, 1H, -CHHa (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.53 (-NC=O), 143.90, 133.31, 133.00, 132.77, 128.34, 128.31, 128.15, 127.87, 127.82, 127.50, 126.68, 126.29, 126.08, 121.68, 120.70, 107.89, 36.10, 33.49, 26.77, 22.68 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 13.5 min (major product), tR = 15.6 min (minor product). HRMS (DART) calcd for C₂₁H₁₈NO [M+H]⁺: 300.1388 found: 300.1388.

(1*R*,2*S*)-1',2-Dimethyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3k)

The solution of diazooxindole (0.2 mmol) in toluene (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene (2 mL) for 4 h under argon atmosphere at 0 °C. This compound

was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between α -methylstyrene **2g** (118.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3k** in 93% yield as red solid (50 mg, 0.186 mmol). *trans/cis* = 98:2, 97% *trans* ee. [α]^{24.1}_D = -52.9 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39–6.56 (m,

8H), 5.49 (d, J = 7.02 Hz, 1H), 3.32 (s, 3H, -NCH₃), 2.10 (d, J = 4.89 Hz, 1H, -CH (cyclopropane)), 2.09 (d, J = 4.89, 1H, -CH (cyclopropane)), 1.86 (s, 3H, cyclopropane-CH₃) ppm. ¹³C NMR (100 MHz, (CD₃)₂CO) δ 174.95 (-NC=O), 143.63, 141.98, 129.86, 128.85, 128.62, 127.63, 126.70, 121.20, 121.06, 108.31, 41.39, 36.26, 29.58, 26.84, 21.18 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 19/1, Flow rate = 1.0 mL/min, tR = 10.7 min (major product), tR = 13.8 min (minor product). HRMS (DART) calcd for C₁₈H₁₈NO [M+H]⁺: 264.1388 found: 264.1381.

(1R,2S)-1'-Methyl-2-(4-nitrophenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (3l)

The solution of diazooxindole (0.2 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) for 2 min under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 4-nitrostyrene **2h** (149.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with

EtOAc/n-Hexane as an eluent to give **3l** in 85% yield as yellow solid (50.0 mg, 0.170 mmol). *trans/cis* = 96:4, 94% *trans* ee. [α]^{26.4}_D = -156.0 (c 1.2, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (dd, J = 8.41 Hz, 2H), 7.37 (d, J = 8.41 Hz, 2H), 7.19 (td, J = 7.64, 1.15 Hz, 1H), 6.90 (d, J = 7.64 Hz, 1H), 6.72 (td, J = 7.55, 1.34 Hz, 1H), 5.93 (d, J = 6.88 Hz, 1H), 3.37–3.31 (m, 4H, -NCH₃, -CH (cyclopropane)), 2.27 (dd, J = 8.98, 4.89 Hz, 1H, -CHβH (cyclopropane)), 2.02 (dd, J = 8.03, 4.89 Hz, 1H, -CHHα (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 175.80 (-NC=O), 147.29, 144.07, 143.10, 130.94, 127.37, 126.46, 123.76, 121.89, 120.48, 108.32, 34.94, 33.61, 26.86, 22.13 ppm. The ee value was determined by HPLC analysis. Column (Chiral IF-3), UV 230 nm, eluent: Hexane/IPA = 15/1, Flow rate = 1.0 mL/min, tR = 24.3 min (major product), tR = 32.9 min (minor product). HRMS (DART) calcd for C₁₇H₁₅N₂O₃ [M+H]⁺: 295.1082 found: 295.1082.

(1*R*,2*S*)-2-(4-Bromophenyl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (3m)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 4-bromostyrene **2i** (183.1 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3m** in 98% yield as red solid (64.3 mg, 0.196 mmol). *trans/cis* = 96:4, 94% *trans* ee. $[\alpha]^{24.9}_{D}$ = -127.1 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 8.22 Hz, 2H), 7.18 (t, *J* = 7.64 Hz, 1H),

7.06 (d, J = 8.22 Hz, 2H), 6.88 (d, J = 7.64 Hz, 1H), 6.74 (d, J = 7.64 Hz, 1H), 5.97 (d, J = 7.64 Hz, 1H), 3.32 (s, 3H, -NCH₃), 3.24 (t, J = 8.60 Hz, 1H, -CH (cyclopropane)), 2.18 (dd, J = 9.17, 4.59 Hz, 1H, -CH β H

(cyclopropane)), 1.93 (dd, J = 8.03, 4.59 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.29 (-NC=O), 143.96, 134.42, 131.76, 131.65, 127.18, 126.92, 121.77, 121.49, 120.77, 108.04, 35.07, 33.27, 26.79, 22.45 ppm. The ee value was determined by HPLC analysis. Column (Chiral OZ-H), UV 230 nm, eluent: Hexane/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 12.6 min (major product), tR = 15.5 min (minor product). HRMS (DART) calcd for C₁₇H₁₅BrNO [M+H]⁺: 328.0337 found: 328.0330.

(1*R*,2*S*)-2-(4-Chlorophenyl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (3n)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 4-chlorostyrene **2j** (138.6 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3n** in 98% yield as red solid (55.6 mg, 0.196 mmol). *trans/cis* = 96:4, 93% *trans* ee. $[\alpha]^{25.3}_{D}$ = -144.9 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 8.41 Hz, 2H), 7.17 (td, *J* = 7.74, 1.02 Hz,

1H), 7.11 (d, J = 8.41 Hz, 2H), 6.88 (d, J = 7.64 Hz, 1H), 6.73 (dd, J = 7.45 Hz, 1H), 5.97 (d, J = 7.26 Hz, 1H), 3.32 (s, 3H, -NCH₃), 3.26 (t, J = 8.60 Hz, 1H, -CH (cyclopropane)), 2.18 (dd, J = 9.17, 4.59 Hz, 1H, -CH β H (cyclopropane)), 1.93 (dd, J = 8.03, 4.59 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.26 (-NC=O), 143.94, 143.94, 133.88, 133.30, 131.36, 128.67, 127.17, 126.88, 121.71, 120.73, 108.00, 34.99, 33.28, 26.74, 22.47 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 60/1, Flow rate = 1.0 mL/min, tR = 20.4 min (major product), tR = 26.1 min (minor product). HRMS (DART) calcd for C₁₇H₁₅ClNO [M+H]⁺: 284.0842 found: 284.0842.

(1R,2S)-2-(4-Methoxyphenyl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (30)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 4-methoxystyrene **2k** (134.2 mg, 1mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3o** in 79% yield as white solid (44.1 mg, 0.158 mmol). *trans/cis* = >99:1<, 97% *trans* ee. $[\alpha]^{25.2}_{D} = -133.4$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.15 (td, J = 7.74, 1.02 Hz,

1H), 7.09 (d, J = 8.60 Hz, 2H), 6.86 (d, J = 7.64 Hz, 1H), 6.81 (d, J = 8.60 Hz, 2H), 6.70 (t, J = 7.45 Hz, 1H), 5.99 (d, J = 7.64 Hz, 1H), 3.78 (s, 3H, Ar-OCH₃), 3.32 (s, 3H, -NCH₃), 3.27 (t, J = 8.41, 8.51 Hz, 1H, -CH (cyclopropane)), 2.16 (dd, J = 8.98, 4.40 Hz, 1H, -CH β H (cyclopropane)), 1.94 (dd, J = 7.84, 4.40 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR δ (100 MHz, CDCl₃) 176.61 (-NC=O), 158.87, 143.89, 131.08, 127.75, 127.31, 126.56, 121.57, 120.85, 113.83, 107.80, 55.34, 35.39, 33.43, 26.71, 22.89 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-3), UV 230 nm, eluent: Hexane/IPA = 60/1, Flow rate = 1.0 mL/min, tR = 28.7 min (major product), tR = 36.9 min (minor product). HRMS (DART) calcd for C₁₈H₁₈NO₂ [M+H]⁺: 280.1337 found: 280.1336.

(1R,2S)-2-(4-(Dimethylamino)phenyl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (3p)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between N'N-dimethyl-4-vinylaniline **2l** (134.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3p** in 74% yield as white solid (44.1 mg, 0.158 mmol). *trans/cis* = >99:1<, 24% *trans* ee. $[\alpha]^{24.6}_{D}$ = -37.9 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (td, *J* = 7.74, 1.02 Hz, 1H), 7.04 (d, *J* = 8.60 Hz, 2H), 6.85 (d, *J* = 7.58 Hz, 1H), 6.71 (td, *J* = 7.55, 0.89 Hz, 1H), 6.64 (d, *J* = 8.60 Hz, 2H), 6.07

(d, J = 7.26 Hz, 1H), 3.31 (s, 3H, -NCH₃), 3.26 (t, J = 8.51 Hz, 1H, -CH (cyclopropane)), 2.92 (s, 6H, Ar-N(CH₃)₂), 2.14 (dd, J = 9.17, 4.50 Hz, -CH β H (cyclopropane)), 1.96 (dd, J = 7.84, 4.50 Hz, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.82 (-NC=O), 149.84, 143.85, 130.66, 128.11, 126.35, 122.79, 122.56, 120.94, 112.41, 107.69, 40.66, 35.85, 33.66, 26.69, 23.02 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 14.3 min (major product), tR = 16.2 min (minor product). HRMS (DART) calcd for C₁₉H₂₁N₂O [M+H]⁺: 293.1653 found: 293.1654.

(1R,2S)-5'-Bromo-1'-methyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3q)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene **2a** (104.2 mg, 1.0 mmol) and 5-bromo-3-diazo-1-methylindolin-2-one **1f** (50.4 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3q** in

93% yield as red oil (61.05mg, 0.188 mmol). *trans/cis* = 89:11, 87% *trans* ee. $[\alpha]^{24}_{D}$ = 80 (c 0.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.23 (m, 4H), 7.19–7.13 (m, 2H), 6.72 (d, *J* = 8.03 Hz, 1H), 6.02 (d, *J* = 1.91 Hz,, 1H), 3.37 (t, *J* = 8.41 Hz, 1H, -C**H** (cyclopropane)), 3.30 (s, 3H, -NCH₃), 2.21 (dd, *J* = 8.79, 4.59 Hz, 1H, -C**H**βH (cyclopropane)), 2.01 (dd, *J* = 8.03, 4.59 Hz, 1H, -CHHα (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.00 (-NC=O), 142.91, 134.59, 129.92, 129.79, 129.40, 128.65, 127.87, 123.92, 114.32, 109.16, 36.47, 33.40, 26.85, 22.96. The ee value was determined by HPLC analysis. Column (Chiral IE-3), UV 230 nm, eluent: Hexane/IPA = 15/1, Flow rate = 1.0 mL/min, tR = 14.5 min (major product), tR = 15.7 min (minor product). HRMS (DART) calcd for C₁₇H₁₅BrNO [M+H]⁺: 328.0337 found: 328.0337.

(1*R*,2*S*)-6'-Chloro-1'-methyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3r)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene **1a** (104.2 mg, 1 mmol) and 6-chloro-3-diazo-1-methylindolin-2-one **1g** (41.5 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3r** in

98% yield as yellow oil (55.6 mg, 0.196 mmol). *trans/cis* = 96:4, 99% *trans* ee. $[\alpha]^{25.1}_{D}$ = -104.3 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.23 (m, 3H), 7.16 (d, *J* = 6.88 Hz, 1H), 6.85 (d, *J* = 1.91 Hz, 1H), 6.64 (td, *J* = 8.03, 1.91 Hz, 1H), 5.83 (d, *J* = 8.03 Hz, 1H), 3.34 (t, *J* = 8.60 Hz, 1H, -CH (cyclopropane)), 3.30 (s, 3H, -NCH₃), 2.20 (dd, *J* = 9.17, 4.59 Hz, 1H, -CHβH (cyclopropane)), 2.00 (dd, *J* = 8.03, 4.59 Hz, 1H, -CHHα (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.49 (-NC=O), 145.01, 134.91, 132.59, 129.95, 128.58, 127.68, 125.99,

121.48, 121.41, 108.62, 36.20, 33.19, 26.85, 22.64. The ee value was determined by HPLC analysis. Column (Chiral IF-3), UV 230 nm, eluent: Hexane/IPA = 80/1, Flow rate = 1.0 mL/min, tR = 27.2 min (major product), tR = 69.6 min (minor product). HRMS (DART) calcd for $C_{17}H_{15}CINO [M+H]^+$: 284.0842 found: 284.0842.

(1R,2S)-6'-Methoxy-1'-methyl-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (3s)

The solution of diazooxindole (0.2 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) for 2 min under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between styrene

2a (104.2 mg, 1 mmol) and 3-diazo-6-methoxy-1-methylindolin-2-one **1h** (40.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3s** in 93% yield as red solid (52 mg, 0.186 mmol). *trans/cis* = 98:2, 95% *trans* ee. $[\alpha]^{25.4}_{D}$ = -94.4 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.22 (m, 3H), 7.18 (d, *J* = 6.88 Hz, 2H), 6.47 (d, *J* = 2.29 Hz, 1H), 6.20 (td, *J* = 8.41, 2.29 Hz, 1H), 5.84 (d, *J* = 8.41 Hz, 1H), 3.74 (s, 3H, Ar-OCH₃), 3.29 (s, 3H, -NCH₃), 3.26 (t, *J* = 8.51 Hz, 1H, -CH (cyclopropane)), 2.12 (8.98, 4.50 Hz, 1H, -CH β H (cyclopropane)), 1.92 (dd, *J* = 8.03, 4.50 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.25 (-NC=O), 159.41, 145.08, 135.52, 130.01, 128.44, 127.38, 121.26, 119.46, 105.56, 96.20, 55.55, 35.20, 32.99, 26.76, 21.99. The ee value was determined by HPLC analysis. Column (Chiral IE-3), UV 230 nm, eluent: Hexane/IPA =, Flow rate = 1.0 mL/min, tR = 39.4 min (major product), tR = 37.6 min (minor product). HRMS (DART) calcd for C₁₈H₁₈NO₂ [M+H]⁺: 280.1337 found: 280.1337.

(1S,2R)-1'-Methyl-2'-oxospiro[cyclopropane-1,3'-indolin]-2-yl acetate (3t)

The solution of diazooxindole (0.2 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) for 4 h under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between vinyl acetate **2m**

^{3t} (86.1 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3t** in 84% yield as yellow solid (38.9 mg, 0.168 mmol). *trans/cis* = 98:2, 90% *trans* ee. $[\alpha]^{23.6}$ _D = +142.0 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.28 (td, *J* = 7.74, 1.28 Hz, 1H), 7.02 (td, *J* = 7.55, 0.89 Hz, 1H), 6.96 (dd, *J* = 7.26, 0.76 Hz), 6.90 (d, *J* = 7.64 Hz, 1H), 4.73 (dd, *J* = 7.07, 5.16 Hz, 1H, -CH (cyclopropane)), 3.28 (s, 3H, -NCH₃), 2.11 (t, *J* = 6.69 Hz, 1H, -CHβH (cyclopropane)), 2.03 (s, 3H, CO-CH₃), 1.87 (dd, *J* = 6.31, 5.16 Hz, -CHHa (cyclopropane)) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 174.70, 170.23, 144.38, 127.49, 126.08, 122.0, 120.61, 108.47, 60.17, 32.29, 26.71, 21.07, 20.54 ppm. The ee value was determined by HPLC analysis. Column (Chiral IE-3), UV 230 nm, eluent: Hexane/IPA = 8/1, Flow rate = 1.0 mL/min, tR = 40.8 min (major product), tR = 51.0 min (minor product). HRMS (DART) calcd for C₁₃H₁₄NO₃ [M+H]⁺: 232.0973 found: 232.0970.

(1*S*,2*R*)-1'-Methyl-2'-oxospiro[cyclopropane-1,3'-indolin]-2-yl benzoate (3u)

The solution of diazooxindole (0.2 mmol) in toluene:CH₂Cl₂ = 1:1 (2 mL) was slowly added to a mixture of

Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene:CH₂Cl₂ = 1:1 (2 mL) for 4 h under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between vinyl benzoate **2n** (148.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3u** in 85% yield as white solid (49.9 mg, 0.17 mmol). *trans/cis* = >99:1<, 92% *trans* ee. $[\alpha]^{22.5}_{D}$ = -122.4 (c 1.0,

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (td, J = 8.22, 1.34 Hz, 2H), 7.58 (t, J = 7.45 Hz, 1H), 7.44–7.41 (m, 2H), 7.23 (td, J = 7.74, 1.28 Hz, 1H), 6.96 (d, J = 7.26 Hz, 1H), 6.91 (t, J = 7.74 Hz, 2H), 4.96 (dd, J = 6.88, 4.97 Hz, 1H, -C**H** (cyclopropane)), 3.30 (s, 3H, -NCH₃), 2.23 (t, J = 6.69 Hz, 1H, -C**H** β H (cyclopropane)), 2.01 (dd, J = 6.50, 4.97 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.75, 165.93, 144.38, 133.63, 129.72, 129.03, 128.69, 127.45, 126.04, 122.09, 120.87, 108.44, 60.69, 32.42, 26.73, 21.55 ppm. The ee value was determined by HPLC analysis. Column (Chiral IF-3), UV 230 nm, eluent: Hexane/IPA = 8/1, Flow rate = 1.0 mL/min, tR = 19.0 min (major product), tR = 22.9 min (minor product). HRMS (DART) calcd for C₁₈H₁₆NO₃ [M+H]⁺: 294.1130 found: 294.1134.

(1*S*,2*R*)-2-(9H-Carbazol-9-yl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (3v)

This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between 9-vinylcarbazole **20** (193.3 mg, 1mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give **3v** in 92% yield as white solid (62.3 mg, 0.184 mmol). *trans/cis* = 92:8, 78% *trans* ee. $[\alpha]^{25.4}_{D} = -37.7$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.03 Hz, 1H), 7.95 (d, J = 7.64 Hz, 1H),

7.76 (d, J = 8.03 Hz, 1H), 7.52 (td, J = 7.84, 1.15 Hz, 1H), 7.31 (t, J = 7.07 Hz, 1H), 7.06 (td, J = 7.64, 0.76 Hz, 2H), 7.01 (t, J = 7.55 Hz, 1H), 6.89 (d, J = 7.64 Hz, 1H), 6.55 (d, J = 8.03 Hz, 1H), 6.41 (dd, J = 7.07 Hz, 1H), 5.72 (d, J = 7.40 Hz, 1H), 4.27 (dd, J = 7.64, 6.12, 1H, -CH (cyclopropane)), 3.44 (s, 3H, -NCH₃), 2.68 (dd, J = 7.64, 5.35 Hz, 1H, -CHβH (cyclopropane)), 2.53 (t, J = 5.74 Hz, 1H, -CHHa (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.90 (-NC=O), 143.57, 141.09, 140.69, 127.36, 126.18, 126.05, 125.75, 123.75, 123.03, 122.22, 120.77, 120.50, 120.10, 119.98, 110.13, 110.03, 108.13, 41.00, 33.65, 27.00, 23.48 ppm. The ee value was determined by HPLC analysis. Column (Chiral IF-3), UV 230 nm, eluent: Hexane/IPA = 10/1, Flow rate = 1.1 mL/min, tR = 13.4 min (major product), tR = 23.3 min (minor product). HRMS (DART) calcd for C₂₃H₁₉N₂O [M+H]⁺: 339.1497 found: 339.1495.

2-((1*S*,2*R*)-1'-Methyl-2'-oxospiro[cyclopropane-1,3'-indolin]-2-yl)isoindoline-1,3-dione (3w)

The solution of diazooxindole (0.2 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.002 mmol) and olefins (1.0 mmol) in toluene: $CH_2Cl_2 = 1:1$ (2 mL) for 4 h under argon atmosphere at 0 °C. This compound was prepared according to the typical procedure for asymmetric intermolecular cyclopropanation reaction of between N-vinylphthalimide **2p** (173.2 mg, 1 mmol) and 3-diazo-1-methylindolin-2-one **1a** (34.6 mg, 0.2 mmol). The reaction mixture was purified by silica gel column chromatography with

EtOAc/n-Hexane as an eluent to give **3w** in 37% yield as white solid (23.6 mg, 0.074 mmol). *trans/cis* = 86:14, 93% *trans* ee. $[\alpha]^{25.1}_{D}$ = -156.7 (c 0.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.86–7.77 (m, 2H), 7.76–7.69 (m, 2H), 7.20 (td, *J* = 7.84, 1.15 Hz, 1H), 6.91 (d, *J* = 8.03 Hz, 1H), 6.76 (td, *J* = 7.55, 0.89 Hz, 1H), 6.47 (dd, *J* = 7.64, 0.76 Hz, 1H), 3.62 (dd, *J* = 8.22, 6.41 Hz, 1H, -CH (cyclopropane)), 3.34 (s, 3H, -NCH₃), 2.64 (t, *J* = 8.32 Hz, 1H, -CHβH (cyclopropane)), 2.41 (dd, *J* = 8.41, 6.41 Hz, 1H, -CHHα (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.93 (-NC=O), 167.99, 144.29, 134.55, 131.34, 127.58, 126.09, 123.68, 122.11, 119.20, 108.56, 37.64, 32.18, 26.85, 19.84 ppm. The ee value was determined by HPLC analysis. Column (Chiral IA-3), UV 230 nm, eluent: Hexane/IPA = 8/1, Flow rate = 0.8 mL/min, tR = 25.8 min (major product), tR = 34.3 min (minor product). HRMS (DART) calcd for C₁₉H₁₅N₂O₃ [M+H]⁺: 319.1082 found: 319.1085.

4. Ssynthesis of Bioactive Compound.

(1R,2S)-5'-Fluoro-2-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (4a) ^{[7], [8]}

Using the procedure of diazooxindoles, 5-fluoroisatin (102.4 mg, 0.62 mmol, 1 equiv.) and tosylhydrazine (127.0 mg, 0.682 mmol, 1.1 equiv.) were dissolved in MeOH (5 mL). The reaction mixture was refluxed for 2 h, the reaction mixture was concentrated under reduced pressureand and filtered off. The residue was suspended in $CH_2Cl_2:H_2O = 1:1$ (4 mL) and treated with 0.6M NaOH water solution (2.06 mL, 1.24 mmol). The reaction mixture was stirred for 2 h at 45 °C, and then allowed to reach room temperature. The mixture was neutralized by addition of dry-ice, diluted with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give 3-diazo-5-fluoroindolin-2-one as red solid (63% yield, 69.1 mg, 0.391 mmol).

The solution of 3-diazo-5-fluoroindolin-2-one (35.4 mg, 0.2 mmol) in acetone (2 mL) was slowly added to a

mixture of Ru(II)-Pheox **6e** (0.002 mmol) and styrene (104.2 mg, 1.0 mmol) in acetone (2 mL) for 2 min under argon atmosphere at 0 °C. After the addition completed, the reaction mixture was then stirred for 24 h at 0 °C. The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give 4**a** in 82% yield as brown solid (41.5 mg, 0.164 mmol). *trans/cis* = >99:1<, 95% *trans* ee . $[\alpha]^{25.9}_{D}$ = -136.0 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H, -N**H**), 7.37–7.22 (m, 3H), 7.19 (d, *J* = 6.50 Hz, 2H), 6.86 (td, *J* = 8.41, 4.59 Hz, 1H), 6.76 (dd, *J* = 8.89, 2.49 Hz, 1H), 5.67 (dd, *J* = 8.60, 2.49 Hz, 1H), 3.39 (t, *J* = 8.60 Hz, 1H, -C**H** (cyclopropane)), 2.25 (dd, *J* = 9.17, 4.78 Hz, 1H, -C**H** β H (cyclopropane)), 2.03 (dd, *J* = 8.03, 4.78 Hz, -CHH**a** (cyclopropane)) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 178.82 (-NC=O), 158.46 (d, *J* = 8.63 Hz), 136.96, 134.3, 129.95 (2C), 129.86, 128.73 (2C), 127.95, 113.05 (d, *J* = 23.96 Hz), 110.09 (d, *J* = 8.63 Hz), 36.70, 34.31, 23.18 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 15.1 min (major product), tR = 18.7 min (minor product). HRMS (DART) calcd for C₁₆H₁₃FNO [M+H]⁺: 254.0981 found: 254.0981.

Using the procedure of diazooxindoles, isatin (245.7 mg, 1.67 mmol, 1 equiv.) and tosylhydrazine (342.7 mg, 1.84

mmol, 1.1 equiv.) were dissolved in MeOH (10 mL). The reaction mixture was refluxed for 6 h, the reaction mixture was concentrated under reduced pressureand and filtered off. The residue was suspended in THF (15 mL) and treated with 0.2M NaOH water solution (16.7 mL, 3.34 mmol). The reaction mixture was stirred for 2 h at 45 °C, and then allowed to reach room temperature. The mixture was neutralized by addition of dry-ice, diluted with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give 3-diazoindolin-2-one as pale-orange solid (82% yield, 217.9 mg, 1.369 mmol).

The solution of 3-diazoindolin-2-one (95.5 mg, 0.6 mmol) in CH₂Cl₂ (4 mL) was slowly added to a mixture of Ru(II)-Pheox **6e** (0.006 mmol) and 4-chlorostyrene (415.8 mg, 3.0 mmol) in CH₂Cl₂ (5 mL) for 2 min under argon atmosphere at 0 °C. After the addition completed, the reaction mixture was then stirred for 24 h at 0 °C. The reaction mixture was purified by silica gel column chromatography with EtOAc/n-Hexane as an eluent to give the (1*R*,2*S*)-2-(4-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-one in 93% yield as white solid (150.5 mg, 0.56 mmol). *trans/cis* = 96:4, 94% *trans* ee. [α]^{26.0}_D = -187.3 (c 0.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H, -N**H**), 7.33–7.23 (m, 3H), 7.17–7.08 (m, 3H), 6.95 (d, *J* = 7.64 Hz, 1H), 6.71 (td, *J* = 7.52, 1.02 Hz, 1H), 5.96 (d, *J* = 7.64 Hz, 1H), 3.28 (t, *J* = 8.51 Hz, 1H, -C**H** (cyclopropane)), 2.22 (dd, *J* = 9.17, 4.69 Hz, 1H), 2.25 (dd, *J* = 9.17, 4.78 Hz, 1H, -C**Hβ**H (cyclopropane)), 1.96 (dd, *J* = 7.84, 4.69 Hz, 1H, -CH**Ha** (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 178.35 (-NC=O), 141.00, 133.70, 133.46, 131.43, 128.76, 127.62, 126.94, 121.79, 121.14, 109.82, 35.40, 33.70, 22.77 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 20/1, Flow rate = 1.0 mL/min, tR = 17.1 min (major product), tR = 21.5 min (minor product). HRMS (DART) calcd for C₁₆H₁₃CINO [M+H]⁺: 270.0685 found: 270.0685.

(1R,2S)-2-(4-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (99.8)0.37 mg, mmol), methyl-(3-bromomethyl)-benzoate (136.1 mg, 0.56 mmol) and Cs₂CO₃ (247.6 mg, 0.74 mmol) were mixture in anhydrous DMF (8 mL) and stirred at room temperature for 7 h. The mixture was extracted with Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography with Hexane/EtOAc to give the methyl 3-(((1R,2S)-2-(4-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-1'-yl)methyl)benzoate 4b in 99% yield as white solid (153.1 mg, 0.366 mmol). *trans/cis* = >99:1<, 93% *trans* ee. $[\alpha]^{25.9}_{D} = -143.4$ (c 1.0, CHCl₃). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.02 \text{ (s, 1H)}, 7.95 \text{ (d, } J = 8.03 \text{ Hz}, 1\text{H}), 7.51 \text{ (d, } J = 7.64 \text{ Hz}, 1\text{H}), 7.41 \text{ (t, } J = 7.64 \text{ Hz}, 1\text{H}),$ 7.27 (d, J = 8.41 Hz, 2H), 7.14 (d, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (d, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (d, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (d, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (d, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (d, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (t, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 6.74 (t, J = 8.03 Hz, 1H), 6.70, (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, J = 8.41 Hz, 2H), 7.05 (t, J = 7.84 Hz, 1H), 7.05 (t, J = 8.03 Hz, 1H), 7.05 (t, = 7.64 Hz, 1H), 5.98 (d, J = 7.64 Hz, 1H), 5.10 (d, J = 16.00 Hz, 1H, -NHHAr), 5.04 (d, J = 16.00 Hz, 1H, -NHHAr), 3.91 (s, 3H, COOCH₃), 3.35 (t, *J* = 8.51 Hz, 1H, -CH (cyclopropane)), 2.29 (dd, *J* = 9.17, 4.69 Hz, 1H, -CH β H (cyclopropane)), 2.00 (dd, J = 7.84, 4.69 Hz, 1H, -CHH α (cyclopropane)) ppm. ¹³C NMR (125 MHz, CDCl₃) & 176.45 (-NC=O), 166.85, 142.76, 136.75, 133.74, 133.43, 131.87, 131.42, 130.81, 129.13, 129.03, 128.75, 128.48, 127.15, 126.89, 121.93, 120.94, 108.88, 52.33, 43.99, 35.56, 33.28, 22.76 ppm. The ee value was determined by HPLC analysis. Column (Chiral AD-H), UV 230 nm, eluent: Hexane/IPA = 10/1, Flow rate = 1.0 mL/min, tR = 19.8 min (major product), tR = 23.5 min (minor product). HRMS (DART) calcd for $C_{25}H_{21}CINO_3$

Methyl-3-(((1*R*,2*S*)-2-(4-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-1'-yl)methyl)benzoate (54.3 mg, 0.13 mmol) was dissolved in 4 mL of methanol; then 0.4 mL of water was added followed by LiOH (11.7 mg, 0.49 mmol). The mixture was stirred for 22 hours at 40 °C. The mixture was extracted with Et₂O. The combined organic layers were dried over Na₂SO₄ filtered and concentrated. The reaction mixture was purified by silica gel column chromatography with CH₂Cl₂/MeOH as an eluent to give **4c** in 98% yield as white solid. *trans/cis* = >99:1<, $[\alpha]^{27.2}_{D}$ = -153.8 (c 0.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (s, 1H), 8.03 (d, *J* = 8.03 Hz, 1H), 7.58 (d, *J* = 7.64 Hz, 1H), 7.46 (t, *J* = 7.84 Hz, 1H), 7.29 (d, *J* = 8.61 Hz, 2H), 7.15 (d, *J* = 8.61 Hz, 2H), 7.06 (td, *J* = 7.64, 1.15 Hz, 1H), 6.75 (d, *J* = 7.64 Hz, 1H), 6.71 (t, *J* = 7.84 Hz, 1H), 6.00 (d, *J* = 7.64 Hz, 1H), 5.10 (s, 2H, -NCH₂Ar), 3.37 (t, *J* = 8.51 Hz, 1H, -CH (cyclopropane)), 2.32 (dd, *J* = 8.98, 4.69 Hz, 1H, -CHβH (cyclopropane)), 2.02 (dd, *J* = 8.03, 4.69 Hz, 1H, -CHHα (cyclopropane)) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 176.65 (-NC=O), 171.51, 142.65, 136.88, 133.71, 133.45, 132.71, 131.45, 130.01, 129.67, 129.31, 128.93, 128.80, 127.17, 126.96, 122.07, 120.99, 108.93, 43.90, 35.77, 33.41, 22.73 ppm. HRMS (DART) calcd for C₂₄H₁₉ClNO₃ [M+H]+: 404.1053 found: 404.1053.

5. X-ray Crystal Structure

(1R,2S)-2-(4-Bromophenyl)-1'-methylspiro[cyclopropane-1,3'-indolin]-2'-one (3m)

Table S1. Crystal data and structure refinement.

Empirical formula	C17 H14 Br N O	
Formula weight	328.20	
Temperature	120 K	
Wavelength	0.71075 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 6.0888(8) Å	α= 90°.
	b = 12.5645(17) Å	β= 90°.

	c = 17.867(2) Å	$\gamma = 90^{\circ}$.
Volume	1366.9(3) Å ³	
Ζ	4	
Density (calculated)	1.595 Mg/m ³	
Absorption coefficient	3.001 mm ⁻¹	
<i>F</i> (000)	664	
Crystal size	0.400 x 0.070 x 0.070 m	m ³
Theta range for data collection	1.982 to 30.033°.	
Index ranges	-8<=h<=8, -17<=k<=17	, -24<= <i>l</i> <=24
Reflections collected	29902	
Independent reflections	3974 [<i>R</i> (int) = 0.0323]	
Completeness to theta = 25.242°	98.9 %	
Absorption correction	Numerical	
Max. and min. transmission	0.677 and 0.267	
Refinement method	Full-matrix least-square	s on F^2
Data / restraints / parameters	3974 / 0 / 226	
Goodness-of-fit on F^2	0.991	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0207, wR2 = 0.04	481
<i>R</i> indices (all data)	R1 = 0.0228, wR2 = 0.04	488
Absolute structure parameter	-0.018(2)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.964 and -0.278 e.Å ⁻³	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	11380(4)	13224(2)	11278(1)	19(1)
C(2)	9556(4)	13468(2)	10839(1)	22(1)
C(3)	8103(4)	12688(2)	10603(1)	21(1)
C(4)	8419(4)	11620(2)	10809(1)	18(1)
C(5)	10225(3)	11363(1)	11239(1)	14(1)
C(6)	11684(3)	12169(2)	11466(1)	16(1)
C(7)	13211(3)	10638(2)	11929(1)	16(1)
C(8)	11101(3)	10353(2)	11547(1)	15(1)
C(9)	9773(4)	9492(2)	11945(1)	17(1)
C(10)	10786(3)	9238(2)	11211(1)	16(1)

C(11)	9407(3)	9091(2)	10533(1)	15(1)
C(12)	10161(4)	9351(1)	9821(1)	17(1)
C(13)	8898(4)	9199(2)	9187(1)	18(1)
C(14)	6800(4)	8776(2)	9269(1)	16(1)
C(15)	5991(4)	8499(2)	9968(1)	16(1)
C(16)	7287(3)	8666(2)	10594(1)	16(1)
Br(1)	4975(1)	8599(1)	8416(1)	19(1)
O(1)	14480(2)	10037(1)	12256(1)	21(1)
N(1)	13413(3)	11722(1)	11884(1)	16(1)
C(17)	15088(4)	12345(2)	12271(1)	21(1)

Table S3. Bond lengths [Å] and angles [°].

C(1)-C(6)	1.381(3)
C(1)-C(2)	1.394(3)
C(2)-C(3)	1.385(3)
C(3)-C(4)	1.405(3)
C(4)-C(5)	1.380(3)
C(5)-C(6)	1.407(3)
C(5)-C(8)	1.483(3)
C(6)-N(1)	1.408(3)
C(7)-O(1)	1.228(3)
C(7)-N(1)	1.370(3)
C(7)-C(8)	1.498(3)
C(8)-C(9)	1.526(3)
C(8)-C(10)	1.536(3)
C(9)-C(10)	1.484(3)
C(10)-C(11)	1.485(3)
C(11)-C(12)	1.392(3)
C(11)-C(16)	1.402(3)
C(12)-C(13)	1.382(3)
C(13)-C(14)	1.392(3)
C(14)-C(15)	1.386(3)
C(14)-Br(1)	1.899(2)
C(15)-C(16)	1.385(3)
N(1)-C(17)	1.459(3)

C(6)-C(1)-C(2)	117.1(2)
C(3)-C(2)-C(1)	121.7(2)
C(2)-C(3)-C(4)	120.5(2)
C(5)-C(4)-C(3)	118.6(2)
C(4)-C(5)-C(6)	119.69(18)
C(4)-C(5)-C(8)	133.95(19)
C(6)-C(5)-C(8)	106.35(18)
C(1)-C(6)-C(5)	122.4(2)
C(1)-C(6)-N(1)	127.8(2)
C(5)-C(6)-N(1)	109.80(18)
O(1)-C(7)-N(1)	125.6(2)
O(1)-C(7)-C(8)	127.6(2)
N(1)-C(7)-C(8)	106.74(17)
C(5)-C(8)-C(7)	105.85(16)
C(5)-C(8)-C(9)	126.08(18)
C(7)-C(8)-C(9)	114.32(18)
C(5)-C(8)-C(10)	126.17(18)
C(7)-C(8)-C(10)	120.21(17)
C(9)-C(8)-C(10)	57.97(13)
C(10)-C(9)-C(8)	61.37(14)
C(9)-C(10)-C(11)	120.84(19)
C(9)-C(10)-C(8)	60.66(13)
C(11)-C(10)-C(8)	120.21(18)
C(12)-C(11)-C(16)	117.7(2)
C(12)-C(11)-C(10)	122.00(19)
C(16)-C(11)-C(10)	120.30(19)
C(13)-C(12)-C(11)	122.2(2)
C(12)-C(13)-C(14)	118.5(2)
C(15)-C(14)-C(13)	121.1(2)
C(15)-C(14)-Br(1)	119.04(16)
C(13)-C(14)-Br(1)	119.83(16)
C(16)-C(15)-C(14)	119.1(2)
C(15)-C(16)-C(11)	121.3(2)
C(7)-N(1)-C(6)	111.11(17)
C(7)-N(1)-C(17)	124.62(18)
C(6)-N(1)-C(17)	124.07(17)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C(1)	23(1)	15(1)	20(1)	-2(1)	1(1)	-2(1)
C(2)	31(1)	15(1)	22(1)	-1(1)	0(1)	6(1)
C(3)	22(1)	21(1)	19(1)	1(1)	-3(1)	7(1)
C(4)	18(1)	18(1)	18(1)	-2(1)	-2(1)	2(1)
C(5)	17(1)	13(1)	13(1)	-1(1)	0(1)	3(1)
C(6)	17(1)	17(1)	13(1)	-1(1)	3(1)	1(1)
C(7)	15(1)	18(1)	16(1)	-1(1)	3(1)	1(1)
C(8)	14(1)	13(1)	16(1)	-1(1)	0(1)	0(1)
C(9)	19(1)	17(1)	15(1)	1(1)	0(1)	-1(1)
C(10)	16(1)	13(1)	19(1)	0(1)	2(1)	0(1)
C(11)	16(1)	11(1)	19(1)	-1(1)	0(1)	1(1)
C(12)	15(1)	14(1)	22(1)	0(1)	3(1)	1(1)
C(13)	21(1)	16(1)	16(1)	1(1)	4(1)	2(1)
C(14)	18(1)	13(1)	17(1)	-1(1)	-2(1)	3(1)
C(15)	15(1)	14(1)	20(1)	1(1)	2(1)	-1(1)
C(16)	18(1)	14(1)	16(1)	1(1)	4(1)	0(1)
Br(1)	21(1)	22(1)	15(1)	1(1)	-2(1)	0(1)
O(1)	18(1)	22(1)	23(1)	2(1)	-4(1)	3(1)
N(1)	15(1)	16(1)	17(1)	-1(1)	-2(1)	-2(1)
C(17)	19(1)	25(1)	20(1)	-3(1)	-3(1)	-4(1)

Table S4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for C:cc.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³).

	x	у	Ζ	U(eq)
H(1)	12420(40)	13810(20)	11420(15)	35(8)
H(2)	9240(40)	14230(20)	10639(14)	29(7)
H(3)	6840(40)	12897(19)	10335(13)	23(7)
H(4)	7400(40)	11121(19)	10645(13)	19(7)
H(5)	8190(40)	9656(18)	11970(13)	17(6)

H(6)	10330(40)	9234(17)	12384(12)	17(6)
H(7)	12150(40)	8810(20)	11227(14)	26(7)
H(8)	11600(40)	9639(18)	9757(13)	15(6)
H(9)	9460(40)	9414(18)	8699(13)	20(6)
H(10)	4610(40)	8215(16)	10024(12)	10(6)
H(11)	6740(40)	8440(19)	11052(14)	21(6)
H(12)	14420	12742	12669	32
H(13)	15766	12827	11924	32
H(14)	16181	11875	12473	32

Table S6. Torsion angles [°].

C(6)-C(1)-C(2)-C(3)	0.3(3)
C(1)-C(2)-C(3)-C(4)	0.6(3)
C(2)-C(3)-C(4)-C(5)	-1.0(3)
C(3)-C(4)-C(5)-C(6)	0.6(3)
C(3)-C(4)-C(5)-C(8)	-178.9(2)
C(2)-C(1)-C(6)-C(5)	-0.8(3)
C(2)-C(1)-C(6)-N(1)	178.2(2)
C(4)-C(5)-C(6)-C(1)	0.4(3)
C(8)-C(5)-C(6)-C(1)	180.0(2)
C(4)-C(5)-C(6)-N(1)	-178.83(18)
C(8)-C(5)-C(6)-N(1)	0.8(2)
C(4)-C(5)-C(8)-C(7)	176.7(2)
C(6)-C(5)-C(8)-C(7)	-2.8(2)
C(4)-C(5)-C(8)-C(9)	-45.8(3)
C(6)-C(5)-C(8)-C(9)	134.6(2)
C(4)-C(5)-C(8)-C(10)	27.9(4)
C(6)-C(5)-C(8)-C(10)	-151.64(19)
O(1)-C(7)-C(8)-C(5)	-179.6(2)
N(1)-C(7)-C(8)-C(5)	3.9(2)
O(1)-C(7)-C(8)-C(9)	37.3(3)
N(1)-C(7)-C(8)-C(9)	-139.26(18)
O(1)-C(7)-C(8)-C(10)	-28.5(3)
N(1)-C(7)-C(8)-C(10)	154.97(18)
C(5)-C(8)-C(9)-C(10)	113.9(2)
C(7)-C(8)-C(9)-C(10)	-111.63(19)

C(8)-C(9)-C(10)-C(11)	-109.7(2)
C(5)-C(8)-C(10)-C(9)	-113.8(2)
C(7)-C(8)-C(10)-C(9)	101.4(2)
C(5)-C(8)-C(10)-C(11)	-3.1(3)
C(7)-C(8)-C(10)-C(11)	-147.9(2)
C(9)-C(8)-C(10)-C(11)	110.7(2)
C(9)-C(10)-C(11)-C(12)	148.82(19)
C(8)-C(10)-C(11)-C(12)	77.0(3)
C(9)-C(10)-C(11)-C(16)	-32.1(3)
C(8)-C(10)-C(11)-C(16)	-103.8(2)
C(16)-C(11)-C(12)-C(13)	-0.3(3)
C(10)-C(11)-C(12)-C(13)	178.88(19)
C(11)-C(12)-C(13)-C(14)	0.3(3)
C(12)-C(13)-C(14)-C(15)	-0.8(3)
C(12)-C(13)-C(14)-Br(1)	177.85(16)
C(13)-C(14)-C(15)-C(16)	1.2(3)
Br(1)-C(14)-C(15)-C(16)	-177.47(16)
C(14)-C(15)-C(16)-C(11)	-1.1(3)
C(12)-C(11)-C(16)-C(15)	0.7(3)
C(10)-C(11)-C(16)-C(15)	-178.5(2)
O(1)-C(7)-N(1)-C(6)	179.8(2)
C(8)-C(7)-N(1)-C(6)	-3.5(2)
O(1)-C(7)-N(1)-C(17)	-5.1(3)
C(8)-C(7)-N(1)-C(17)	171.52(18)
C(1)-C(6)-N(1)-C(7)	-177.4(2)
C(5)-C(6)-N(1)-C(7)	1.8(2)
C(1)-C(6)-N(1)-C(17)	7.5(3)
C(5)-C(6)-N(1)-C(17)	-173.30(18)

Symmetry transformations used to generate equivalent atoms:

D-HA	<i>d</i> (D-H)	<i>d</i> (HA)	<i>d</i> (DA)	<(DHA)
C(17)-H(14)Br(1)#1	0.96	2.94	3.825(2)	153.0

Table S7. Hydrogen bonds $[\text{\AA and }^{\circ}]$.

Symmetry transformations used to generate equivalent atoms:

6. NMR Spectral Data

7. HPLC Spectral Data

Peak	RT [min]	AREA [µV•sec]	HEIGHT [µV]	AREA %	HEIGHT %
1	3.650	205777	31563	0.814	2.388
2	6.058	205302	22292	0.812	1.686
3	14.600	12438096	683930	49.176	51.737
4	16.533	12443912	584159	49.199	44.189

Peak	RT [min]	AREA [µV•sec]	HEIGHT [µV]	AREA %	HEIGHT %
1	15.117	67269	3802	1.044	1.282
2	17.125	6376614	292859	98.956	98.718

Peak	RT [min]	AREA [µV•sec]	HEIGHT [µV]	AREA %	HEIGHT %
1	13.450	17991952	995908	98.135	98.338
2	15.550	342018	16836	1.865	1.662

1.431

1.262

142423

2

13.825

1	28.175	6867927	219109	46.518	57.205
2	36.000	6825369	148841	46.230	38.859
3	64.392	550253	8112	3.727	2.118
4	70.392	520446	6965	3.525	1.818

354857

93.431

92.883

6026235

2

15.683

0 The A						
	35.0	40.0 Rete	45.0 Intion Time [min]	50.0	55.0	
Peak	RT [min]	AREA [µV•sec]	HEIGHT [µV]	AREA %	HEIGHT %	
1	37.567	325898	5900	2.469	2.520	
2	39.425	12875174	228210	97.531	97.480	

ATTEN ISTAN			S	201/110	5_002 - CH1
300000 -				4	Ph >= 0
[J1] 200000					
<u>로</u> 100000		1, 2, v v			
0		A A		A A	
10.0 15.0 20.0 25.0 Retention Time [min]					
Peak	RT [min]	AREA [µV•sec]	HEIGHT [µV]	AREA %	HEIGHT %
1	10.883	307654	18025	2.062	2.818
2	11.625	305736	17528	2.049	2.741
3	18.725	7143709	323346	47.877	50.556
4	22.325	7163934	280675	48.012	43.885

8. Calculation Method

To predict the possible conformations of Ru(II)-Pheox **6e**, the CONFLEX conformation search method [1,2] implemented in CONFLEX 8 [3] was used. The M06-2X hybrid functional with the LanL2DZ basis set for Ru and 6-31G(d) for other atoms were chosen to describe the potential energy surface (PES) using Gaussian 16 [4]. CONFLEX 8 can access the PES obtained by the electronic structure calculation directly because the interface to Gaussian (16 or 09) has been implemented.

9. Calculation result

Table S1. Optimization of metal-carbene complex (Ru(II)-Pheox 6e) in toluene.

No.	Total energy (Hartree)	Relative energy (kcal/mol)
1	-1317.140442	0.00
2	-1317.136508	2.47
3	-1317.136296	2.60
4	-1317.132608	4.92
5	-1317.132045	5.27
6	-1317.127699	8.00
7	-1317.125439	9.41

S2

S3

Figure S1. Optimized structures of metal-carbene complex (Ru(II)-Pheox 6e) in toluene.

10. Plausible Mechanism

Figure S2. Reaction Mechanism.

Figure S3. Chiral Induction.

11. Reference

[1] C. Marit and E. M. Carreira, J. Am. Chem. Soc., 2005, 127 (32), 11505.

[2] M. Ošeka, M. Kimm, S. Kaabel, I. Järving, K. Rissanen and T. Kanger, Org. Lett., 2016, 18 (6), 1358.

[3] G. Kaupp and D. Matthies, Chem. Ber., 1987, 120 (11), 1897.

[4] X. K. Wee, T. Yang and M, L. Go, ChemMedChem, 2012, 7 (5), 777.

[5] H. Ji, Y. Zhu, Y. Shao, J. Liu, Y. Yuan and X. Jia, J. Org. Chem., 2017, 82 (18), 9859.

[6] J. L. Meloche and B. L. Ashfeld, Angew. Chem. Int. Ed., 2017, 56 (23), 6604.

[7] G. K. Murphy, F. Z. Abbas and V. Poulton, Adv. Synth. Catal., 2014, 356, 2919.

[8] M. Palomba, L. Rossi, L. Sancineto, E. Tramontano, A. Corona, L. Bagnoli, C. Santi, C. Pannecouque, O. Tabarrini and F. Marini, *Org. Biomol. Chem.*, **2016**, 14, 2015.

[9] L. Chen, M. Huang, L. Feng, Y. He and H. Yun, WO2011/069298 A1, 2011