Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

1

Supporting Information

Synthesis of 5-amino-N'-(9*H*-fluoren-9-ylidene)-8-nitro-7-aryl-1,2,3,7tetrahydroimidazo[1,2-*a*]pyridine-6-carbohydrazide derivatives based on heterocyclic ketene aminals

Hajar Hosseini, Mohammad Bayat

The Table of Contents

Title	Page
Title, author's name, address and table of contents	1-2
Experimental Section; General remarks	2
Figure 1. Structure of all products 6a-k	3
¹ H and ¹³ C NMR and IR and Mass spectrums of 6a	4-7
¹ H and ¹³ C NMR and IR and Mass spectrums of 6b	8-11
¹ H and ¹³ C NMR and IR and Mass spectrums of 6c	12-15
¹ H and ¹³ C NMR spectrums of 6d	16-17
¹ H and ¹³ C NMR and Mass spectrums of 6e	18-20
¹ H and ¹³ C NMR and IR and Mass spectrums of 6f	21-24
¹ H and D ₂ O exchange and ¹³ C NMR of 6g	25-26
¹ H and ¹³ C NMR and IR and Mass spectrums of 6h	27-30
¹ H and D ₂ O exchange and ¹³ C NMR and IR and Mass spectrums of 6i	31-34
¹ H and ¹³ C NMR spectrums of 6 j	35-36
¹ H and ¹³ C NMR spectrums of 6 k	37-38

Experimental Section

General remarks:

Melting points were measured on an Electrothermal 9100 apparatus. Mass spectra were recorded with an Agilent 5975C VL MSD with Triple-Axis Detector operating at an ionization potential of 70 eV. ¹H and ¹³C NMR spectra were measured (DMSO) with a Bruker DRX-300 AVANCE spectrometer at 300 and 75 MHz, respectively. IR spectra were recorded on a Bruker Tensor 27, \bar{v} in cm⁻¹. All NMR spectra at room temperature were determined in DMSO-*d*₆. Chemical shifts are reported in parts per million (δ) downfield from an internal tetramethylsilane reference. Coupling constants (*J* values) are reported in hertz (Hz), and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All chemicals were purchased from Merck or Aldrich and were used without further purification.

Figure 1. Structure of all products 6a-k.

The structures of all products **6a-k** were deduced from their IR, mass, ¹H NMR, and ¹³C NMR spectra (see the following images).

¹H NMR of 6a

¹³C NMR of 6a

IR of 6a

¹H NMR of 6b

¹³C NMR of 6b

A verage of 1.194 to 3.756 m in .: H H - R 18.d \ data.m s 356.2 164.1 1200000 1100000 Ö NO_2 N N H 1000000 900000 H_2N ΝH 800000 230.1 700000 600000 276.1 500000 400000 300000 200000 69.1 100000 200 324.1 12.1 453.2 495.4 <u>407.4</u> 400 0 250 100 150 300 450 50 350 m / z -->

MS of 6b

¹H NMR of 6c

IR of 6c

MS of 6c

¹H NMR of 6d

¹³C NMR of 6d

¹H NMR of 6e

IR of 6f

¹³C NMR of 6g

¹H NMR of 6h

¹³C NMR of 6h

IR of 6h

Abundance A verage of 0.097 to 1.752 min.: HH-R20.d \ data.ms 163.1 ,OCH₃ NO_2 N. N H H₂N `NН 105.1 57.1 220.1 292.1 259.1₁ ¹ 356.2 414.2 453.2 508.5 m / z -->

¹H NMR of 6i

¹³C NMR of 6i

IR of 6i

MS of 6i

¹H NMR of 6j

¹³C NMR of 6j

¹H NMR of 6k

¹³C NMR of 6k