Supplementary Information

Synthesis and characterization of MgF₂-CoF₂ binary fluorides. Influence of the treatment atmosphere and temperature on the structure and surface properties

Mariusz Pietrowski*, Michał Zieliński, Emilia Alwin, Agata Suchora, Joanna Gawarecka

Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614 Poznań, Poland

Corresponding author, e-mail: mariop@amu.edu.pl

Comple	Dried	Reduced		Oxidized	
Sample	120 °C	300 °C	400 °C	300 °C	400 °C
Mg100				9	
MgCo0.6				۲	
MgCo7.5					
MgCo37.7					
Co100					

Table S1 Photographs of Mg_xCo_{1-x}F₂ binary fluorides after thermal treatment in reducing and oxidizing atmospheres.

Fig. S1 Powder diffraction patterns of Mg_xCo_{1-x}F₂ binary fluorides calcined for 5h at 300°C (a) and 400°C (b).

In Figure S1 presented are X-ray powder diffraction patterns of the samples oxidized in air. Magnesium fluoride calcined at 300 °C (Mg100-Ox3) is characterized by a set of reflections typical of MgF₂ (sellaite, PDF 41-1443) and has tetragonal structure (P4₂/mnm). No other reflections (also from MgO), that could indicate the presence of other crystalline phases, were observed. The incorporation of CoF₂ in the amount of 0.6 mol% did not result in changes in the XRD pattern. At a greater Co content (the MgCo7.5-Ox3 sample), the reflections became shifted towards smaller 2 θ angles which indicates the replacement of Mg²⁺ ions by Co²⁺ ions. On the other hand, no magnesium-containing sample (Co100-Ox3) is characterized by the presence of reflections originating from CoF₂ (PDF 33-417) and signals pointing to the presence of the Co₃O₄ phase (PDF 43-1003). The oxide phase also appears in the XRD pattern of the MgCo7.5-Ox3 sample and its amount increases with increasing CoF₂ content in the sample. In the diffraction pattern of MgCo37.7-Ox3 the aforementioned phase is discernible and in that of no magnesium-containing sample (Co100-Ox3) it is very clearly visible. After calcination at 400 °C, the presence of cobalt oxide becomes even more pronounced. Cobalt fluoride is not as stable as MgF₂ and during the calcination it is gradually oxidized to Co₃O₄.

Fluoride	a, Å	c, Å	c/a	Year	Ref.
MgF ₂	4.6218 (1)	3.0534 (2)	0.6606	1962	1
MgF ₂	4.6213 (1)	3.0159 (1)	0.6526	1971	2
MgF ₂	4.6213 (1)	3.0519 (1)	0.6604	1976	3
MgF ₂	4.628 (5)	3.045 (3)	0.6580	1981	4
MgF ₂	4.6233 (1)	3.0522 (1)	0.6602	1987	5
MgF ₂	4.6249 (1)	3.0520 (1)	0.6599	2001	6
MgF ₂	4.622 (7)	3.050 (3)	0.6599	2002	7
MgF ₂	4.6258 (6)	3.0469 (4)	0.6587	2012	8
Mg100-R3	4.6214 (2)	3.0413 (4)	0.6581	2018	this work
CoF ₂	4.6951 (1)	3.1796 (2)	0.6772	1954	9
CoF ₂	4.6954 (4)	3.1774 (4)	0.6767	1971	2
CoF ₂	4.6950 (7)	3.1817 (5)	0.6777	1993	10
CoF ₂	4.6956 (5)	3.1793 (5)	0.6771	2001	11
Co100-R3	4.6934 (3)	3.1437 (5)	0.6699	2018	this work

Table S2 Values of a and c parameters for MgF₂ and CoF₂, according to literature data and those obtained in this work.

Parenthesized figures represent standard deviations of the least unit cited.

Fig. S2 XPS survey spectra of MgF_2 , CoF_2 and $Mg_xCo_{1-x}F_2$ binary fluorides.

References

- 1. K. V. K. Rao, S. V. N. Naidu and P. L. N. Setty, *Acta Crystallogr.*, 1962, **15**, 528-530.
- 2. W. H. Baur and A. A. Khan, Acta Crystallogr. Sect. B: Struct. Sci., 1971, **B 27**, 2133-2139.
- 3. W. H. Baur, Acta Crystallogr. Sect. B: Struct. Sci., 1976, **32**, 2200-2204.
- 4. J. P. Vidal, G. Vidal-Valat, M. Galtier and K. Kurkisuonio, *Acta Crystallogr. Sect. A: Found. Crystallogr.*, 1981, **37**, 826-837.
- 5. N. Nakagiri, M. H. Manghnani, Y. H. Kim and L. C. Ming, in *High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto*, American Geophysical Union, 2013, DOI: 10.1029/GM039p0281, pp. 281-287.
- 6. J. Haines, J. M. Leger, F. Gorelli, D. D. Klug, J. S. Tse and Z. Q. Li, *Phys. Rev. B: Condens. Matter*, 2001, **64**, 1341101-13411010.
- 7. J. L. Booster, J. H. L. Voncken, A. van Sandwijk and M. A. Reuter, *Powder Diffr.*, 2002, **17**, 112-118.
- 8. A. Demourgues, N. Penin, D. Dambournet, R. Clarenc, A. Tressaud and E. Durand, *J. Fluorine Chem.*, 2012, **134**, 35-43.
- 9. J. W. Stout and S. A. Reed, J. Am. Chem. Soc., 1954, 76, 5279-5281.
- 10. M. M. R. Costa, J. A. Paixao, M. J. M. Dealmeida and L. C. R. Andrade, *Phys. Rev. B: Condens. Matter*, 1993, **49**, 591-599.
- 11. N. J. O'Toole and V. A. Streltsov, Acta Crystallogr. Sect. B: Struct. Sci., 2001, 57, 128-135.