Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

## Highly Conjugated Architectures and Labile Reaction Intermediates from Coupling between $10\pi$ electron-deficient Heteroaromatics and *sym*-Trihydroxy- or Triamino-benzene Derivatives

Gabriele Micheletti,<sup>1\*</sup> Carla Boga,<sup>1</sup> Silvia Cino,<sup>1</sup> Silvia Bordoni,<sup>1</sup> Elena Chugunova<sup>2</sup>

<sup>1.</sup> Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum Università di Bologna Viale Del Risorgimento, 4 402136 Bologna Italy.

<sup>2.</sup> A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzovst. 8, Kazan, Tatarstan 420088 Russia.

\* Correspondence to: gabriele.micheletti3@unibo.it; Tel.: +39-051-2093616

| Content                                                                                                 | Page |
|---------------------------------------------------------------------------------------------------------|------|
| Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of new substitution products               | 2    |
| Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR spectra of Wheland Meisenheimer intermediates WM1-WM5 | 27   |
| Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR and HSQC spectra of Meisenheimer intermediates M1-M6  | 37   |



Figure SI-1. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, 25 °C) of compound 6.



Figure SI-2. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100.56 MHz, 25 °C) of compound 6.



Figure SI-3. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 600 MHz, 25 °C) of compound 6H<sup>+</sup>Cl<sup>-</sup>.



Figure SI-4. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 150.56 MHz, 25 °C) of compound 6H<sup>+</sup>Cl<sup>-</sup>.



Figure SI-5. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, 25 °C) of compound 6H<sup>+</sup>picrate.



Figure SI-6. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100.56 MHz, 25 °C) of compound 6H<sup>+</sup>picrate.



Figure SI-7. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, 25 °C) of compound 7.



Figure SI-8. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100.56 MHz, 25 °C) of compound 7.



Figure SI-9. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, 25 °C) of compound 7H<sup>+</sup>Cl<sup>-</sup>.



Figure SI-10. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100.56 MHz, 25 °C) of compound 7H<sup>+</sup>Cl<sup>-</sup>.



Figure SI-11. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, 25 °C) of compound 8.



Figure SI-12. <sup>1</sup>H NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 600 MHz, 0 °C) of compound 8H<sup>+</sup>Cl<sup>-</sup>.



Figure SI-13. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 600 MHz, 25 °C) of compound 10.



Figure SI-14.  $^{13}$ C NMR spectrum (CD<sub>3</sub>CN, 100.6 MHz, 25 °C) of compound 10.



Figure SI-15. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 300 MHz, 25 °C) of compound 11.



Figure SI-16. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 300 MHz, 25 °C) of compound 14.



Figure SI-17. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 100.56 MHz, 25 °C) of compound 14.



Figure SI-18. DEPT 135 spectrum (CD<sub>3</sub>CN, 100.56 MHz, 25 °C) of compound 14.



Figure SI-19. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 300 MHz, 25 °C) of compound 15.



**Figure SI-20**. <sup>13</sup>C NMR spectrum (CD<sub>3</sub>CN, 150.80 MHz, 25 °C) of compound **15**; signals at 65 ppm are electric spikes as can be seen in DEPT in Fig. SI-17).



Figure SI-21. DEPT 135 spectrum (CD<sub>3</sub>CN, 150.80 MHz, 25 °C) of compound 15.



Figure SI-22. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 600 MHz, 25 °C) of compound 16.



Figure SI-23. <sup>13</sup>C NMR spectrum (CD<sub>3</sub>CN, 150.80 MHz, 25 °C) of compound 16; peaks at 159.7 and 95.3 ppm belong to phloroglucinol.



Figure SI-24. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 600 MHz, 25 °C) of compound 17.



Figure SI-25. <sup>13</sup>C NMR spectrum (CD<sub>3</sub>CN, 150.80 MHz, 25 °C) of compound 17



Figure SI-26. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, -60 °C) of compound WM1



Figure SI-27. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100.6 MHz, -43 °C) of compound WM1



Figure SI-28. <sup>13</sup>C NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 100.6 MHz, -80 °C) of compound WM1



Figure SI-29. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, -60 °C) of compound WM2



Figure SI-30. <sup>13</sup>C NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 100.6 MHz, -80 °C) of compound WM2



Figure SI-31. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, -37 °C) of compound WM3



Figure SI-32. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100.6 MHz, -37 °C) of compound WM3



Figure SI-33. g-HSQC spectrum (CDCl<sub>3</sub>, 100.6 MHz, -37 °C) of compound WM3



Figure SI-34. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz, -37 °C) of compound WM4 and WM5



Figure SI-35. g-HSQC spectrum (CDCl<sub>3</sub>, 100.6 MHz, -37 °C) of compound WM4 and WM5



Figure SI-36. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 400 MHz, -35 °C) of compound M1



Figure SI-37. <sup>13</sup>C NMR spectrum (CD<sub>3</sub>CN, 100.56 MHz, -35 °C) of compound M1



Figure SI-38. HSQC spectrum (CD<sub>3</sub>CN, 400 MHz, -35 °C) of compound M1



Figure SI-39. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz, 25 °C) of compound M2



Figure SI-40. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 150.80 MHz, 25 °C) of compound M2



Figure SI-41. HSQC spectrum (DMSO-*d*<sub>6</sub>, 400 MHz, 25 °C) of compound M2.



**Figure SI-42.** <sup>1</sup>H NMR spectrum (CD<sub>3</sub>COCD<sub>3</sub>, 400 MHz, -10 °C) of compound **M3**; signals at 9.27 and 9.76 ppm belong to unreacted starting DNBZ, likely added in excess.



**Figure SI-43.** <sup>1</sup>H NMR spectrum (CD<sub>3</sub>COCD<sub>3</sub>, 400 MHz, +35 °C) of compound **M3**; signals at 9.27 and 9.76 ppm belong to unreacted starting DNBZ, likely added in excess.



**Figure SI-44.** <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 400 MHz, -35 °C) of compound **M4**; signals at 9.45, 9.10, 6.07, and 3.72 ppm belong to unreacted starting materials.



Figure SI-45. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 600 MHz, -35 °C) of compound M5, together with signals belonging to unreacted starting materials



Figure SI-46. <sup>13</sup>C NMR (CD<sub>3</sub>CN, 150.80 MHz, -35 °C) of compound M5 together with signals belonging to unreacted starting materials.



Figure SI-47. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 400 MHz, -35 °C) spectrum of compound M6.



Figure SI-48. HSQC (CD<sub>3</sub>CN, 400 MHz, -35 °C) of compound M6.