Supporting Information for

Morphology-Controlled Synthesis of CoMoO4 Nanoarchitectures Anchored on Carbon Cloth for High-Efficiency Oxygen Oxidation Reaction

Feifei Wang,^{a, ‡} Juan Zhao,^{a, ‡} Wen Tian,^a Zhufeng Hu,^a Xingbin Lv,^a Hualian Zhang,^a

Hairong Yue, ^a Yuxin Zhang, ^c Junyi Ji, ^{a, b,*} Wei Jiang^a

^a School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China

^b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China

^c College of Material Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China

* Corresponding author. E-mail addresses: Junyi Ji, E-mail: junyiji@scu.edu.cn

‡ The authors contribute equal to this manuscript.

Figure S1 XRD patterns of theCoMoO₄/CC-2 and the corresponding powder collected during the hydrothermal process.

Figure S2 Low magnification SEM images of the a) CoMoO₄/CC-1, b) CoMoO₄/CC-2 and c) CoMoO₄/CC-3 and d) CoMoO₄/CC-4.

Figure S3 TEM images of the $CoMoO_4/CC-3$ composite, a) low magnification images, b) high magnification images and the SAED pattern.

Figure S3a shows that the nanosheets and nanorods are coexisted in the $CoMoO_4/CC-3$ composite. As shown in figure S3b, the lattice fringe of 0.199 nm can be ascribed to the (-511) plane of CoMoO₄. Moreover, the inset in figure S3b also reveals the polycrystalline structure of the CoMoO₄/CC-3 composite.

Figure S4 XRD patterns of the CoMoO₄/CC-2 composite after the i-t test.

Figure S5 XPS spectra of a) full survey, b) Co 2p, c) Mo 2d and d) O 1s of the CoMoO₄/CC-2 electrode after the i-t test.

Figure S5 shows the XPS results of the CoMoO₄/CC-2 composite after the i-t test. The full survey spectrum in **figure S5a** exhibits the coexistence of the Mo, Co and O elements in the composite. As depicted in **figure S5b**, the peaks located at 780.1 eV and 795.1 eV are in line with Co³⁺ species, demonstrating part of the Co (II) was further oxidized into Co (III) during the stability test. Moreover, the peaks of Mo element remained almost unchanged according to **figure S5c**, while the peaks of O 1s shift to the lower binding energy, which may be due to the oxidation of the Co elements.

Figure S6 TEM images of the CoMoO₄/CC-2 composite after the long cycling test, a) the CoMoO₄ nanosheets, b, c) the high-resolution image of the CoMoO₄ nanosheets and d) the SAED pattern acquired from CoMoO₄ nanosheets.

Figure S6a shows the stacked CoMoO₄ nanosheets, demonstrating the part agglomeration of the CoMoO₄ composite. In figure S6b, the lattice fringe of 0.314 nm can be related to the (-311) plane of CoMoO₄. Moreover, it is important to note in Figure S6 that CoOOH crystal phases appear in the CoMoO₄ composite after the cyclic test and the lattice fringe of 0.254 nm can be ascribed to the (130) plane of CoOOH (PDF#26-0846), which illustrates the oxidation process of Co²⁺ in the stability test process. In addition, the crystalline structure is further certified by the selected area electron diffraction (SAED) pattern (**Figure S6d**), illustrating the structural stability of the CoMoO₄ composite.

Figure S7 CV curves of a) $CoMoO_4/CC-1$, b) $CoMoO_4/CC-3$ and c) $CoMoO_4/CC-4$ at different scan rates from 10 to 50 mV s⁻¹.

 Table S1 The loading mass of the as-prepared composites.

Composites	CoMoO ₄ /CC-1	CoMoO ₄ /CC-2	CoMoO ₄ /CC-3	CoMoO ₄ /CC-4
Mass (mg cm ⁻²)	0.13	0.75	0.82	0.19

Table S2 The atomic ratio of Co and Mo elements of the $CoMoO_4/CC$ -2 composite in

Elements	Мо	Со
Atomic %	8.07%	17.29%

the XPS results.

Catalysts	Current density (mA cm ⁻²)	Overpotential (mV)	Ref.
CoMoO ₄ /CC	15	286	This work
Co ₃ O ₄ /CoMoO ₄	10	318	1
NiCo ₂ O ₄ @CoMoO ₄ /	20	265	2
NF			
CoMoO ₄ /CC	10	290	3
CoMoO ₄	10	430	4
CoMoO ₄ nanorod	10	343	5
CoMoO ₄	20	370	6

Table S3 Comparison of the OER performance of $CoMoO_4/CC$ with recently reported materials in alkaline solution.

Reference

- L. Zhang, T. Mi, M. A. Ziaee, L. Liang and R. Wang, J. Mater. Chem. A, 2018, 6, 1639-1647.
- Y. Gong, Y. Zhi, L. Yu, J. Wang, H. Pan and Z. Xu, J. Mater. Chem. A, 2018, 6, 16950-16958.
- 3. J. Meng, J.-Q. Fu, X. Yang, M.-J. Wei, S. Liang, H.-Y. Zang, H.-Q. Tan, Y.-H. Wang and Y.-G. Li, *Inorg. Chem. Front.*, 2017, **4**, 1791-1797.
- M. Rodriguez, M. C. P. Stolzemburg, C. G. O. Bruziquesi, A. C. Silva, C. G. Abreu, K. P. F. Siqueira, L. C. A. Oliveira, M. S. Pires, L. C. T. Lacerda, T. C. Ramalho, A. Dias and M. C. Pereira, *Crystengcomm*, 2018, 20, 5592-5601.
- 5. X. Liu, Y. Yang and S. Guan, *Chem. Phys. Lett.*, 2017, **675**, 11-14.
- 6. X. Yan, L. Tian, S. Atkins, Y. Liu, J. Murowchick and X. Chen, ACS Sustainable Chem. Eng., 2016, 4, 3743-3749.