Supplementary Information for

Electrochemical sensor base on three dimensional nanostructured MoS₂ nanospheres-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid Shuaihui Li^a, Yashen Ma^b, Yongkang Liu^b, Gu Xin^{c*}, Minghua Wang^b, Zhihong Zhang^{b*}, Zhongyi Liu^{a*}

^aSchool of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.

^bHenan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry, Zhengzhou 450002, China.

^cCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China.

*Corresponding authors:

E-mail address: guxin@zzu.edu.cn; 2006025@zzuli.edu.cn; liuzhongyi@zzu.edu.cn

Contents

- S1. Synthesis of GO, PANI and MoS₂ nanospheres
- S2. Chemical structure and components of the samples
- **S3. SEM and TEM images of the samples**
- S4. Electrochemical active surface area of the as-synthesized nanomaterials
- **S5.** Reproducibility of the developed biosensor
- S6. Real sample analysis

S1. Synthesis of GO, PANI and MoS₂ nanospheres

Graphene oxide (GO) was prepared by acid oxidation of graphite powers according to the modified Hummers' method.¹ Crude GO was dispersed in 200 mL of ultrapure water and exfoliated with a Cell crusher (900-1000 W) for 2 h. After being dried using freeze drier, the GO product was obtained finally. GO (50 mg) was added to 40 mL of ultrapure water and sonicated thoroughly until a homogeneous suspension of GO (1.25 mg mL⁻¹) was obtained. PANI was synthesized according to our previous literature.²

MoS₂ nanospheres were prepared by hydrothermal method. Briefly, 0.40 g Na₂MoO₄·2H₂O, 0.66 g thiourea, and 0.25 g PVP were dissolved in 40 mL of deionized water to form a homogeneous solution. Then the solution was transferred to a 50 mL Teflon-lined stainless steel autoclave and heated in an electric oven at 180 °C for 24 h. After cooling to room temperature, the precipitate was isolated by centrifugation and washed thoroughly with deionized water and ethanol for several times, followed by drying in a vacuum oven at 60 °C for 12 h.

S2. Chemical structure and components of the samples

The FT-IR spectra of GO, pristine PANI, MOS₂/rGO, and MOS₂-PANI/rGO nanocomposites are illustrated in **Fig. S1**. The characteristic absorption bands at ~3420 and ~2920 cm⁻¹ represented -NH₂/-OH, and -CH₂/-CH₃ groups. The characteristic peaks ascribed to aromatic C=C (~1627 cm⁻¹) and C–O groups (C–OH at ~1403 cm⁻¹ and C–O at ~1086 cm⁻¹) are observed in the FTIR spectra of GO and MOS₂/rGO, and MOS₂-PANI/rGO samples. The intensity of absorption band at 1730 cm⁻¹ for carboxylate C=O stretching was weakened in MOS₂/rGO, whereas the peak disappeared in MOS₂-PANI/rGO, indicating the reduction of GO to rGO.³ The bands at ~1580 cm⁻¹ (C=N stretching), ~1495 cm⁻¹ (C=C stretching), ~1289 cm⁻¹ (C–N vibration),⁴ ~1129 cm⁻¹ (polaron formation of PANI (Q = N⁺H–B or B–N⁺H–B)),⁵ ~799 cm⁻¹and (ring C–C bending vibration) prove the presence of PANI in MOS₂-PANI/rGO nanocomposite.

Fig. S1 FT-IR spectra of (a) GO, (b) MoS₂/rGO, (c) PANI and (d) MoS₂-PANI/rGO

nanocomposite.

Fig. S2 (a) XPS survey spectra of MoS_2/rGO and MoS_2 -PANI/rGO; high-resolution XPS spectra of (b) C 1*s*, (c) Mo 3*d*, and (d) S 2*p* of MoS_2/rGO .

Table S1 The atomic% of C 1s, N 1s, O 1s, Mo 3d, and S 2p of MoS₂/rGO and MoS₂/rGO/PANI.

Samples	Atomic %				
	C 1 <i>s</i>	N 1s	O 1s	Mo 3d	S2p
MoS ₂ /rGO	82.9	-	14.7	0.77	1.7
MoS2-PANI/rGO	74.5	11.8	10.8	0.88	2.0

S3. SEM and TEM images of the samples

Fig. S3 FE-SEM images of (a) MoS_2 nanospheres, (b) PANI, and (c-d) MoS_2/rGO nanocomposite.

Fig. S4 (a-b) TEM and (c) HR-TEM images of the MoS_2/rGO , and (d) the corresponding SAED pattern.

S4. Electrochemical active surface area of the as-synthesized nanomaterials

Fig. S5 CV curves of the bare GCE, $MoS_2/rGO/GCE$, PANI/GCE, and MoS_2 -PANI/rGO/GCE at scan rate of 100 mV·s⁻¹ in 0.1 M PBS (pH 7.0) containing 5 mM [Fe(CN)₆]^{3-/4-} and 0.1 M KCl.

CV measurements were used to evaluate the electrochemical performance of different materials modified electrodes. **Fig. S5** showed the CV curves of bare GCE and MoS₂/rGO, PANI, MoS₂-PANI/rGO-modified GCEs recorded in 0.1 M PBS (pH 7.0) containing 5 mM [Fe(CN)₆]^{3-/4-} and 0.1 M KCl at a scan rate of 100 mV·s⁻¹. Compared with the bare GCE, the MoS₂/rGO, PANI-modified electrode showed weak redox peaks, suggesting the film acted as a barrier for the electron transfer. For the MoS₂-PANI/rGO-modified GCE, the peaks became more significant, indicating that the MoS₂-PANI/rGO can enhance the electron transfer at the electrolyte/electrode interface. The electrochemical active surface area (*A*) of different electrodes was estimated according to the Randles–Sevcik equation ⁶ as follows:

$I_{\rm p} = 2.69 \times 10^5 (n^{3/2}) \text{AD}^{1/2} v^{1/2} \text{C}$

wherein for Fe(CN)₆³⁻, n=1, $D = 6.7 \times 10^{-6}$ cm²·s⁻¹, C is the concentration of the probe molecule in the solution (mol·cm⁻³), I_p equals I_{pc} , and v represents the scan rate of CV test. The calculated A values for the bare GCE and MoS₂/rGO, PANI, MoS₂-PANI/rGO-modified GCEs were 0.113, 0.101, 0.102, and 0.125 cm², respectively. Therefore, the MoS₂-PANI/rGO/GCE showed the largest electroactive surface area in the different electrodes.

S5. Reproducibility of the developed biosensor

Fig. S6 Peak currents of five MoS_2/rGO modified Au electrodes in 0.1 M PBS (pH 7.0, 0.1 M KCl) containing 1.0 mM, 75 μ M DA, and 75 μ M UA for detection of (a) AA, (b) DA, and (c) UA.

S6. Real sample analysis

Fig. S7 DPV curves of MoS₂-PANI/rGO/GCE in real samples before and after spiking with AA, DA, and UA: (a) human serum¹, (b) human serum², (c) human urine¹, and (d) human urine².

References

- 1. W. S. Hummers Jr and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
- Z. Zhang, F. Duan, L. He, D. Peng, F. Yan, M. Wang, W. Zong and C. Jia, Microchim. Acta, 2016, 183, 1089-1097.
- Y. Ren, J. Zhang, Y. Liu, H. Li, H. Wei, B. Li and X. Wang, ACS Appl. Mater. Inter., 2012, 4, 4776-4780.
- Y. Zhu, E. Liu, Z. Luo, T. Hu, T. Liu, Z. Li and Q. Zhao, *Electrochim. Acta*, 2014, 118, 106-111.
- 5. A. Garai and A. K. Nandi, Synthetic Met., 2009, 159, 1710-1716.
- 6. J. Lu, I. Do, L. T. Drzal, R. M. Worden and I. Lee, ACS Nano, 2008, 2, 1825-1832.