Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

## Supporting information



Fig. S1 The schematic illustration of how to prepare the samples for SERS tests.



Fig. S2 EDX patterns of Fe<sub>3</sub>O<sub>4</sub>.

| Element | Weight     | Atom       |  |
|---------|------------|------------|--|
|         | Percentage | Percentage |  |
| O K     | 30.37      | 59.02      |  |
| Fe K    | 69.63      | 40.98      |  |
| Amounts | 100.00     | 100.00     |  |



Fig. S3  $Fe_3O_4$ -Ag Janus structure in SEM image.



Fig. S4 EDX patterns of  $Fe_3O_4$ -Ag Janus 10.

| Element | Weight     | Atom       |  |
|---------|------------|------------|--|
|         | Percentage | Percentage |  |
| O K     | 22.87      | 48.51      |  |
| Fe K    | 29.29      | 36.44      |  |
| Ag L    | 47.84      | 15.05      |  |
| Amounts | 100.00     | 100.00     |  |



Fig. S5 The structural formula of CV molecule.



Fig. S6 SERS spectra for CV (a), Fe<sub>3</sub>O<sub>4</sub> (b), Fe<sub>3</sub>O<sub>4</sub>-Ag Janus 1h (c), Fe<sub>3</sub>O<sub>4</sub>-Ag Janus 6h (d), Fe<sub>3</sub>O<sub>4</sub>-Ag Janus 10h (e), Fe<sub>3</sub>O<sub>4</sub>-Ag Janus 20h (f), respectively.

| Wavenumbers/cm <sup>-1</sup> | Vibrational assignment                               |  |
|------------------------------|------------------------------------------------------|--|
| 420,440                      | Out-plane vibration of C-phenyl bend                 |  |
| 526, 563, 914                | Ring skeletal vibration of radical orientation       |  |
| 732, 760, 810                | Out of plane vibration of ring C-H bend              |  |
| 1179                         | In plane vibration of ring C-H                       |  |
| 1300                         | Phenyl ring C-C stretching                           |  |
| 1375                         | N-phenyl stretching                                  |  |
| 1443                         | Phenyl ring C-C stretching + ring deformation        |  |
| 1539                         | Phenyl ring C-C stretching $+=N^+$ Phenyl stretching |  |
| 1589                         | Phenyl ring C-C stretching and bend                  |  |
| 1622                         | Phenyl ring C-C stretching+ N-phenyl stretching      |  |

Tab. S1 Analysis of the vibrational assignment corresponding to the peak position of Raman

| Sample                         | Intensity (1622cm <sup>-1</sup> ) | EF                   |
|--------------------------------|-----------------------------------|----------------------|
| CV                             | 8                                 | /                    |
| Fe <sub>3</sub> O <sub>4</sub> | 12                                | 1.79×10 <sup>6</sup> |
| Janus 1h                       | 2047                              | 3.04×10 <sup>8</sup> |
| Janus 6h                       | 2926                              | 4.35×10 <sup>8</sup> |
| Janus 10h                      | 10527                             | 1.57×10 <sup>9</sup> |
| Janus 20h                      | 7994                              | 1.19×10 <sup>9</sup> |

Tab. S2 The values of Raman intensity in the wavenumber of 1622cm<sup>-1</sup> and calculated Raman EF of samples

| SERS substrates                                                        | Probe molecules    | Detection limit         | EF                                          |
|------------------------------------------------------------------------|--------------------|-------------------------|---------------------------------------------|
| Ag-coated Fe <sub>3</sub> O <sub>4</sub> microspheres <sup>1</sup>     | 4-ATP              | 1.0×10 <sup>-12</sup> M | /                                           |
| Ag@Fe <sub>3</sub> O <sub>4</sub> nanospheres <sup>2</sup>             | R6G                | 1.0×10 <sup>-11</sup> M | /                                           |
| Ag-Fe <sub>3</sub> O <sub>4</sub> nanohybrids <sup>3</sup>             | 2-naphthalenethiol | /                       | 1.14 ×10 <sup>3</sup>                       |
| Fe <sub>3</sub> O <sub>4</sub> -Ag Janus microspheres <sup>4</sup>     | Thiram             | 1.0×10 <sup>-7</sup> M  | /                                           |
| Ag-Fe <sub>3</sub> O <sub>4</sub> nanocomposites <sup>5</sup>          | CV                 | 1.0×10 <sup>-9</sup> M  | /                                           |
| Ag-decorated $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> NFs <sup>6</sup> | R6G                | $10^{-10} { m M}$       | 8.1×10 <sup>6</sup>                         |
| Ag/Fe <sub>3</sub> O <sub>4</sub> nanocomposites <sup>7</sup>          | R6G, MB            | /                       | 1.58×10 <sup>8</sup> , 1.46×10 <sup>8</sup> |
| Our sample (Fe <sub>3</sub> O <sub>4</sub> –Ag Janus)                  | CV                 | $> 10^{-13} \text{ M}$  | 1.57×10 <sup>9</sup>                        |

Tab. S3 Comparison of SERS detection limit or EF with different reported references

## References

- 1. L. Yang, Z. Bao, Y. Wu and J. Liu, Journal of Raman Spectroscopy, 2012, 43, 848-856.
- 2. L. Sun, J. He, S. An, J. Zhang and D. Ren, Journal of Molecular Structure, 2013, 1046, 74-81.
- 3. J. Huang, Y. Sun, S. Huang, K. Yu, Q. Zhao, F. Peng, H. Yu, H. Wang and J. Yang, *Journal of Materials Chemistry*, 2011, **21**.
- 4. X. L. Zhang, C. Y. Niu, Y. Q. Wang, S. M. Zhou and J. Liu, *Nanoscale*, 2014, 6, 12618-12625.
- 5. C. Fan, S. Zhu, H. Xin, Y. Tian and E. Liang, *Journal of Optics*, 2017, 19.
- 6. D. Bekana, R. Liu, S. Li, Y. Lai and J.-F. Liu, *Analytica Chimica Acta*, 2018, **1006**, 74-82.
- 7. Y. Shan, Y. Yang, Y. Cao and Z. Huang, *RSC Advances*, 2015, 5, 102610-102618.