Supplementary Information

for

Products distribution and mechanism of the $\mathbf{O H}$ - initiated tropospheric degradation of three CFCs replacement candidates: $\mathrm{CH}_{3} \mathbf{C F}=\mathrm{CH}_{2}$, $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\left((E / Z)-\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CHF}\right.$

CYNTHIA B. RIVELA ${ }^{\text {a }}$, CARMEN M. TOVAR ${ }^{\text {b }}$, RODRIGO GIBILISCO ${ }^{\text {b }}$, MARIANO A. TERUEL ${ }^{\text {a }}$, IAN BARNES ${ }^{\text {b }}$, PETER WIESEN ${ }^{\text {b }}$ AND MARÍA B. BLANCO ${ }^{\text {a* }}$

${ }^{a}$ Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), CONICET, Dpto. de Fisicoquímica, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.
${ }^{b}$ Physikalische Chemie/FBC, Bergische Universitaet Wuppertal, Wuppertal, Germany.
* Corresponding author: María B. Blanco (mblanco@fcq.unc.edu.ar).

Content Summary

IR spectra plots used in the identification of the products formed in the reaction of OH with: HXFP (Figure S3) and PFP (Figure S6).

Concentration-time profiles for the reaction of OH with 2-FP, HXFP and PFP, Figure S1, S4 and S7, respectively.

Yield plots for the reaction of OH radicals with 2-FP (S2) and HXFP (S5) in the absence of NO_{x}. Simulated spectrum of the $\mathrm{FC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OH}$ product formed in the 2-fluoropropene +OH reaction (S8). This information is available free of charge via the Internet at http://www.rsc.org/suppdata.

Figure S1. Concentration-time profiles of 2-Fluoropropene and the reaction products formaldehyde and acetyl fluoride obtained from UV photolysis of 2-Fluoropropene $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ air reaction mixture.

Figure S2. Plots of the concentrations of the reaction products formaldehyde and acetyl fluoride as a function of reacted 2-Fluoropropene obtained from UV photolysis of 2-Fluoropropene $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ air reaction mixtures.

Figure S3. Panel A shows the infrared product spectrum obtained from UV photolysis of 3,3,3-trifluoro-2-(trifluoromethyl)propene $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ air reaction mixture where the 3,3,3-trifluoro-2(trifluoromethyl)propene spectrum was subtracted. Panels B and C show reference spectra of hexafluoroacetone and formaldehyde, respectively. Panel D shows the residual product spectrum obtained after subtraction of features due to the reference spectra from the spectrum in panel A.

Figure S4. Concentration-time profiles of 3,3,3-trifluoro-2-(trifluoromethyl)propene and the reaction products formaldehyde and hexafluoroacetone obtained from UV photolysis of 3,3,3-trifluoro-2-(trifluoromethyl)propene $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ air reaction mixture.

Figure S5. Plots of the concentrations of the reaction products formaldehyde and hexafluoroacetone as a function of reacted 3,3,3-trifluoro-2-(trifluoromethyl)propene obtained from

UV

(trifluoromethyl)propene/ $\mathrm{H}_{2} \mathrm{O}_{2}$ /air reaction mixtures.

Figure S6. Panel A shows the infrared product spectrum obtained from UV photolysis of 1,2,3,3,3-Pentafluoropropene $(E / Z) / \mathrm{H}_{2} \mathrm{O}_{2} /$ air reaction mixture where the $1,2,3,3,3-$ Pentafluoropropene (E / Z) spectrum was subtracted. Panels B and C show reference spectra of trifluoroacetylfluoride and formyl fluoride, respectively. Panel D shows the residual product spectrum obtained after subtraction of features due to the reference spectra from the spectrum in panel A.

Figure S7. Concentration-time profiles of 1,2,3,3,3-Pentafluoropropene (mixture cis/trans) and the reaction products formyl fluoride and trifluoroacetylfluoride obtained from UV photolysis of $1,2,3,3,3$-Pentafluoropropene (mixture cis/trans) $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ air reaction mixture.

Figure S8. Simulated spectrum of $\mathrm{FC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OH}$ formed in the 2-fluoropropene +OH reaction.

