Supplementary Information

for

Products distribution and mechanism of the OH- initiated tropospheric

degradation of three CFCs replacement candidates: CH₃CF=CH₂,

$(CF_3)_2C=CH_2$ and $((E/Z)-CF_3CF=CHF$

CYNTHIA B. RIVELA^a, CARMEN M. TOVAR^b, RODRIGO GIBILISCO^b, MARIANO A. TERUEL^a, IAN BARNES^b, PETER WIESEN^b AND MARÍA B. BLANCO^{a*}

^{*a*} Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), CONICET, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.

^bPhysikalische Chemie/FBC, Bergische Universitaet Wuppertal, Wuppertal, Germany.

* Corresponding author: María B. Blanco (mblanco@fcq.unc.edu.ar).

Content Summary

IR spectra plots used in the identification of the products formed in the reaction of OH with:

HXFP (Figure S3) and PFP (Figure S6).

Concentration-time profiles for the reaction of OH with 2-FP, HXFP and PFP, Figure S1, S4

and S7, respectively.

Yield plots for the reaction of OH radicals with 2-FP (S2) and HXFP (S5) in the absence of NO_x . Simulated spectrum of the FC(O)CH₂OH product formed in the 2-fluoropropene + OH reaction (S8). This information is available free of charge via the Internet at http://www.rsc.org/suppdata.

Figure S1. Concentration-time profiles of 2-Fluoropropene and the reaction products formaldehyde and acetyl fluoride obtained from UV photolysis of 2-Fluoropropene/H₂O₂/air reaction mixture.

Figure S2. Plots of the concentrations of the reaction products formaldehyde and acetyl fluoride as a function of reacted 2-Fluoropropene obtained from UV photolysis of 2-Fluoropropene/ H_2O_2 /air reaction mixtures.

Figure S3. Panel A shows the infrared product spectrum obtained from UV photolysis of 3,3,3-trifluoro-2-(trifluoromethyl)propene/ H_2O_2 /air reaction mixture where the 3,3,3-trifluoro-2-(trifluoromethyl)propene spectrum was subtracted. Panels B and C show reference spectra of hexafluoroacetone and formaldehyde, respectively. Panel D shows the residual product spectrum obtained after subtraction of features due to the reference spectra from the spectrum in panel A.

Figure S4. Concentration-time profiles of 3,3,3-trifluoro-2-(trifluoromethyl)propene and the reaction products formaldehyde and hexafluoroacetone obtained from UV photolysis of 3,3,3-trifluoro-2-(trifluoromethyl)propene/H₂O₂/air reaction mixture.

Figure S5. Plots of the concentrations of the reaction products formaldehyde and hexafluoroacetone as a function of reacted 3,3,3-trifluoro-2-(trifluoromethyl)propene obtained from UV

(trifluoromethyl)propene/H2O2/air reaction mixtures.

Figure S6. Panel A shows the infrared product spectrum obtained from UV photolysis of 1,2,3,3,3-Pentafluoropropene $(E/Z)/H_2O_2/air$ reaction mixture where the 1,2,3,3,3-Pentafluoropropene (E/Z) spectrum was subtracted. Panels B and C show reference spectra of trifluoroacetylfluoride and formyl fluoride, respectively. Panel D shows the residual product spectrum obtained after subtraction of features due to the reference spectra from the spectrum in panel A.

Figure S7. Concentration-time profiles of 1,2,3,3,3-Pentafluoropropene (mixture cis/trans) and the reaction products formyl fluoride and trifluoroacetylfluoride obtained from UV photolysis of 1,2,3,3,3-Pentafluoropropene (mixture cis/trans)/ H_2O_2 /air reaction mixture.

Figure S8. Simulated spectrum of $FC(O)CH_2OH$ formed in the 2-fluoropropene + OH reaction.