Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Niosomes encapsulated in biohydrogels for resveratrol delivery

Supporting Information

Supporting Information

Niosomes encapsulated in biohydrogels for tunable delivery of phytoalexin resveratrol

Noelia D. Machado,^{a,b} Mariana A. Fernández,^a Marleen Haering,^b César Saldías^c and David Díaz Díaz^{b,d}*

^aInstituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba (Argentina). ^bInstitute of Organic Chemistry, University of Regensburg, Universitätstrasse. 31, 93040 Regensburg (Germany). ^cDepartamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Macul, Santiago (Chile). ^dInstituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife (Spain).

E-mail: David.Diaz@chemie.uni-regensburg.de; d.diaz.diaz@ipna.csic.es

LIST OF CONTENTS

Page

1. Digital pictures of representative hydrogels	S3
2. Additional rheological plots	S4
3. Stability of the niosomes in the hydrogels	S6
4. Standard curves for RSV	S7
5. Model release parameters and fitting curves	S 8
6. Photoisomerization experiments	S34

1. Digital pictures of representative hydrogels

Figure S1. Representative hydrogel pictures: A) κ -C:gelatin (1:1 mass ratio, 4 % w/v). B) κ -C:gelatin (1:1 mass ratio, 4 % w/v) containing RSV-niosomes.

2. Additional rheological plots

Figure S2. DTS measurements of native hydrogel (control hydrogel without niosomes) and hydrogel containing RSV-niosomes.

Figure S3. DFS measurements at pH 1.2 of native hydrogel (control hydrogel without niosomes) and hydrogel containing RSV-niosomes.

Figure S4. DSS measurements at pH 1.2 of native hydrogel (control hydrogel without niosomes) and hydrogel containing RSV-niosomes.

Figure S5. DTS measurements at pH 1.2 of native hydrogel (control hydrogel without niosomes) and hydrogel containing RSV-niosomes.

3. Stability of the niosomes in the hydrogels

Figure S6. Mean diameter of RSV-niosomes A) incubated at 37 °C for 24 h and B) after hydrogel degradation.

4. Standard curves for RSV

Figure S7. Standard curve of RSV in water using UV-visible spectrophotometry (λ_{max} = 310 nm, cuvette path length 1 cm).

Figure S8. Standard curve of RSV using HPLC.

5. Model release parameters

Table S1. Model release parameters for *hydrogels* κ -C:gelatin 4 % w/v at pH 1.2, according to different mathematical models.

Mathematical model	k	r^2
First order	-0.0535	0.992
Higuchi	0.21	0.968
Korsmeyer-Peppas	2.85 (n= 0.7)	0.986
Weibull	-2.94×10^{24} (a= 0.002, b= 0.05)	0.985

Table S2. Model release parameters for *hydrogels* κ -C:gelatin 3 % w/v at pH 1.2 according to different mathematical models.

Mathematical model	k	r^2
First order	-0.7189	0.997
Higuchi	0.28	0.989
Korsmeyer-Peppas	3.22 (n= 0.60)	0.993
Weibull	-2.94×10^{24} (a= 0.005, b= 0.05)	0.994

Table S3. Model release parameters for *hydrogels* κ -C:gelatin 2 % w/v at pH 1.2 according to different mathematical models.

Mathematical model	k	r^2
First order	-1.070	0.998
Higuchi	0.38	0.992
Korsmeyer-Peppas	3.69 (n= 0.50)	0.985
Weibull	-2.94×10^{24} (a= 0.013, b= 0.04)	0.988

Table S4. Model release parameters for *hydrogels* κ -C:gelatin 4 % w/v at pH 6.8, according to different mathematical models.

Mathematical model	k	r^2
First order	-0.1366	0.998
Higuchi	0.11	0.984
Korsmeyer-Peppas	1.06 (n= 0.65)	0.998
Weibull	$-2.94 \times 10^{24} (a = -0.002, b = 0.05)$	0.997

Table S5. Model release parameters for *hydrogels* **KC:gelatin 3 % w/v** at pH 6.8 according to different mathematical models.

Mathematical model	k	r^2
First order	-0.1062	0.991
Higuchi	0.14	0.991
Korsmeyer-Peppas	2.14 (n= 0.61)	0.998
Weibull	$-2.94 \times 10^{24} (a = -0.019, b = 0.05)$	0.998

Table S6. Model release parameters for *hydrogels* κ -C:gelatin 2 % w/v at pH 6.8 according to different mathematical models.

Mathematical model	k	r^2
First order	-0.1110	0.990
Higuchi	0.18	0.970
Korsmeyer-Peppas	2.21 (n= 0.72)	0.986
Weibull	-2.94×10^{24} (a= 0.001, b= 0.05)	0.988

Table S7. Correlation coefficients obtained by fitting the experimental data with First Order, Higuchi, Korsmeyer-Peppas and Weibull models.

	Gel	Drug release mathematical models			
	formulation				
pН	κ-C:gelatin	First order	Higuchi	Korsmeyer-	Weibull
	(1:1 mass	riist oldel	Thist order Thiguein	Peppas	weibuli
	ratio) w/v				
	2 %	0.998	0.992	0.985	0.988
1.2	3 %	0.997	0.989	0.993	0.994
	4 %	0.992	0.968	0.986	0.985
	2 %	0.990	0.970	0.986	0.988
6.8	3 %	0.991	0.911	0.998	0.998
	4 %	0.998	0.984	0.998	0.997

Figure S9. 2 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. First order kinetic model at pH 1.2.

Figure S10. 2 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. Higuchi model at pH 1.2.

Figure S11. 2 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels. Korsmeyer-Peppas model at pH 1.2.

Figure S12. 2 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. Weibull model at pH 1.2.

Figure S13. 3 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . First order kinetic model at pH 1.2.

Figure S14. 3 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . Higuchi model at pH 1.2.

Figure S15. 3 % w/v $\kappa\text{-C:gelatin}$ (1:1 mass ratio) hydrogels . Korsmeyer-Peppas model at pH 1.2.

Figure S16. 3 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels . Webull model at pH 1.2.

Figure S17. 4 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . First order kinetic model at pH 1.2.

Figure S18. 4 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . Higuchi model at pH 1.2.

Figure S19. 4 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels. Korsmeyer-Peppas model at pH 1.2.

Figure S20. 4 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . Weibull model at pH 1.2.

Figure S21. 2 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. First order kinetic model at pH 6.8.

Figure S22. 2 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. Higuchi model at pH 6.8.

Figure S23. 2 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels. Korsmeyer-Peppas model at pH 6.8.

Figure S24. 2 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. Weibull model at pH 6.8.

Figure S25. 3 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . First order kinetic model at pH 6.8.

Figure S26. 3 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . Higuchi model at pH 6.8.

Figure S27. 3 % w/v $\kappa\text{-C:gelatin}$ (1:1 mass ratio) hydrogels . Korsmeyer-Peppas model at pH 6.8.

Figure S28. 3 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels . Weibull model at pH 6.8.

Figure S29. 4 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. First order kinetic model at pH 6.8.

Figure S30. 4 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. Higuchi model at pH 6.8.

Figure S31. 4 % w/v κ -C:gelatin (1:1 mass ratio) hydrogels. Korsmeyer-Peppas model at pH 6.8.

Figure S32. 4 % w/v κ-C:gelatin (1:1 mass ratio) hydrogels. Weibull model at pH 6.8.

6. Photoisomerization experiments

Figure S33. Chromatograms of RSV before (black line) and after UV irradiation (pink and light blue lines for RSV ethanolic control solution and RSV in niosomes, respectively).

Figure S34. Chromatograms of RSV in niosomes encapsulated in hydrogel before and after UV-irradiation (light blue and black lines, respectively).

Table S8. Molar ratio of trans-RSV remaining in the sample after UV irradiation.

Sample	trans-RSV remaining
Ethanolic control solution	$0,26 \pm 0,03$
Niosomes	$0,70 \pm 0,07$
Niosomes entrapped hydrogel	$0,89 \pm 0,03$