Name	Log2f	qvalue	Up/down	Mzmed	Rtmed
	old				
L-leucine	14.5	0.017584	UP	117.1	35.34208
11-deoxycorticosterone	-13.5	0.014418	DOWN	314.2	35.35
2-oxoglutarate	-12	0.010417	DOWN	130	38.552
γ-butyrobetaine	11.6	0.019996	UP	130.1	38.541
9-mercaptodethiobiotin	-9.7	0.029138	DOWN	245.1	32.4445
2,3-dihydroxybenzoate	-8	0.046539	DOWN	117	19.082
1-myristoyl-2-palmitoleoyl phosphatidate	7.9	0.057484	UP	308.2	33.844
Pyrazine-2-carboxylate	-7.7	0.045552	DOWN	87	19.08
6-deoxy-6-sulfo-D-fructose 1-phosphate	-7.4	0.031078	DOWN	163	8.713
2-oxo-4-methylthiobutanoate	-7.1	0.014468	DOWN	132	38.8645
S-sulfanylglutathione	-6.1	0.017348	DOWN	358.1	30.294
α-ribazole 5'-phosphate	-6.1	0.016339	DOWN	359.1	30.294
Glyoxylate	-5.9	0.041394	DOWN	119	18.31433
Malate	-5.9	0.053315	DOWN	118	19.0755
5-amino-1-(5-phospho-β-D-ribosyl)imidazole	-5.3	0.042877	DOWN	314.1	18.3
Sulfate	-5.3	0.009955	DOWN	116	38.552
5-amino-6-(D-ribitylamino)uracil	-5	0.021238	DOWN	259.1	24.4715
6,7-dimethyl-8-(1-D-ribityl)lumazi ne	-4.9	0.019453	DOWN	307.1	19.824
N2-succinyl-L-ornithine	-4.6	0.00941	DOWN	214.1	29.373
Ethylene glycol	-4.5	0.04192	DOWN	101	19.162
3-keto-L-gulonate 6-phosphate	-4.4	0.016669	DOWN	149	43.749
(1R,6R)-6-hydroxy-2-succinylcycl ohexa-2,4-diene-1-carboxylate	-4.3	0.008353	DOWN	258.1	24.46

Table S1 Differentially intracellular metabolites in BW25113-∆*ast*E when compared to that those in BW25113 after exposing to 5 g/L butanol

Oxaloacetate	-3.4	0.050957	DOWN	131	29.539
Betaine aldehyde hydrate	-3.2	0.012421	DOWN	165.1	34.9585
6-carboxy-5,6,7,8-tetrahydropterin	3	0.008353	UP	229.1	22.217
L-phenylalanine	3	0.04148	UP	225.1	30.29642
Oxalosuccinate	-2.9	0.045327	DOWN	213	18.265
7,8-dihydromonapterin	2.9	0.039561	UP	256.1	30.295
N,N-dimethyl-p-phenylenediamine	-2.9	0.010324	DOWN	181.1	34.961
2'-deoxycytidine	2.8	0.008353	UP	228.1	22.222
4-(γ-glutamylamino)butanal	-2.6	0.013737	DOWN	201.1	31.50392
Propanoate	-2.5	0.029839	DOWN	113	19.8575
N-acetylmuramate	-2.2	0.051255	DOWN	316.1	18.26433
Thymidine	2.2	0.010074	UP	243.1	22.217
Succinate semialdehyde	-2.1	0.05022	DOWN	137	18.2685
4-(γ-L-glutamylamino)butanoate	-1.8	0.010305	DOWN	256.1	19.8605
L-Valine	1.8	0.03812	UP	132.1	38.547

Animo acids	BW	25113	ΔastE		
	Supernate	Intracellular	Supernate	Intracellular	
	(mg/100ml)	(mg/100ml)	(mg/100ml)	(mg/100ml)	
Ala	0.25 ± 0.03	0.37±0.04	0.73 ± 0.10	0.21±0.15	
Gly	0.13 ± 0.01	0.54 ± 0.14	0.21 ± 0.01	0.20±0.09	
Val	0.33 ± 0.07	0.32 ± 0.09	0.01 ± 0.02	0.33±0.07	
Met	0.15 ± 0.02	0.17 ± 0.06	0.48 ± 0.16	0.21 ± 0.05	
lle	0.05 ± 0.06	0.19 ± 0.05	0.69 ± 0.10	0.12 ± 0.08	
Phe	0.50 ± 0.14	0.17 ± 0.06	0.28 ± 0.07	0.19 ± 0.13	
NH3	17.2 ± 0.08	0.40 ± 0.02	23.0±0.16	0.36 ± 0.07	
His	0.00 ± 0.00	0.10±0.07	0.00 ± 0.00	0.12±0.12	
Asp	0.17 ± 0.03	0.10 ± 0.005	0.19 ± 0.03	0.03 ± 0.01	
Thr	0.23 ± 0.01	0.25 ± 0.05	0.00 ± 0.00	0.28 ± 0.16	
Ser	0.05 ± 0.01	0.22 ± 0.03	0.07 ± 0.02	0.13±0.09	
Pro	0.00 ± 0.00	0.12 ± 0.07	0.00 ± 0.00	0.05 ± 0.03	
Glu	0.36 ± 0.03	0.79±0.22	2.84 ± 0.34	0.30±0.21	
Cys	0.04 ± 0.04	0.00 ± 0.00	0.27 ± 0.01	0.69 ± 0.10	
Leu	0.32 ± 0.11	0.18±0.13	0.59 ± 0.02	0.34±0.09	
Tyr	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.36±0.02	
Lys	0.06 ± 0.01	0.00 ± 0.00	0.22 ± 0.03	0.04 ± 0.01	
Arg	0.05 ± 0.00	0.00 ± 0.00	0.41 ± 0.03	0.00 ± 0.00	

Table S2 Comparison of intracellular amino acids between BW25113 and

$BW25113\mathchar`-\Delta astE$ under but anol stress

Strains/plasmids	Relevant characteristics	Reference
Plasmids		
pKD46	Red recombinant plasmid, Temperature-sensitive,	Lab.
	L-arabinose induction, Amp ^r	collected
pKD3	Harboring the gene of chloramphenicol resistance,	Lab.
	Amp ^r , Cm ^r	collected
pCP20	Harboring the gene of FLP recombinase,	Lab.
	Temperature-sensitive, Amp ^r , Cm ^r	collected
Strains		
E. coli	Host for homologous recombination	Lab.
BW25113	collected	
BW25443-Δ <i>ast</i> Knocking-out of <i>ast</i> E gene in Bw25113, Cm ^r		This study
E		

Table S3 Plasmids and strains used in this study

Amp^r, Cm^r are ampicillin, chloramphenicol resistance, respectively

Primers	Sequences (5'-3')	Applicati
		on
astE-cms	TTAGCTTATTTTTCGAGCATTAATCCCGCGCGTAA	Knocking
	TGTCTTGAGCGATTGTGTAGG	-out <i>astE</i>
astE-cmas	ATGGATAATTTTCTTGCTCTGACCTTAACGGGTAA	
	<u>A</u> CTTAACGGCTGACATGGGAA	
astE-yans	CCAATTACTGAATCTCGGTT	Identifica
astE-yanas	AGAAAGCAACTTAATACCCG	tion of
		$\Delta ast E$

Table S4 Primers used for knocking-out and identifying in this study

*astEcm represents the primers for plate pKD3; astEyan represents the identifying primers. Underline represents the homology sequences to the aim gene.

Table S5 Quantitative PCR primers of selected genes

Gene	Sense	Sequence (5'to3')	Anti-sen	Sequence (5'to3')
name	Primer		se Primer	
astE	astE-qF	ATATGGCAAGTGACAC	astE-qR	CCAACGCTACCAACGGAT
		GCTGAAT		TAGG
prpB	prpB-qF	TTGGCACCATCAACGCT	prpB-qR	GTCGGTCAGCACATCATC
		AATCAT		AAGG
prpD	prpD-qF	AGGTGAATCGTTCCGCT	prpD-qR	GCTGCTTCAACTGCCGTCT
		TCCA		G
ybfA	ybfA-qF	ACAGAGAATATCCTGC	ybfA-qR	TCGGCCTGATCCATCCAC
		ATGGCTTAT		AC
ymgA	ymgA-q	CAGGCGGTGCTCCAGA	mgA-qR	GCTGTCGCTGTTCTTCGGT
	F	TACT		TT
ymgC	ymgC-q	ATGACGCATGGGTATG	mgC-qR	AGAGAGCACGGATTCCCT
	F	TTGATAGT		GTC
iraD	iraD-qF	TTAATTCTCCTCATTCG	iraD-qR	GAGTGTGGCAGTACGCTT
		GCATTACC		CTT
psuK	psuK-qF	TGAAGAGGCACTGGCA	psuK-qR	TGGCTTGAGAGTGTGGAT
		TGGATT		CTGATT
gadC	gadC-qF	ACTGGTTGTTAGTTTCC	gadC-qR	TGGTGCGTTCTGACTGTTG
		TGGTGGTA		ATTG
YbaL	baL-qF	CTGATATTCCGCTGGTG	baL-qR	TTCTTCGTTCGCCGCATTG
		GTGATTG		С
rpoA	rpoA-qF	ATTCGTCGTGCGGCAA	rpoA-qR	ACAGTCAATTCCAGATCG
		CCA		TCAACAG
astE	astE-qF	ATATGGCAAGTGACAC	astE-qR	CCAACGCTACCAACGGAT
		GCTGAAT		TAGG
prpC	prpC-qF	ATCTCGACTGGTTCTCT	prpC-qR	CATAATTGGCGGAAGGAC
		GCTGTT		GGATAA
prpE	prpE-qF	CTCGTCGCTGGAAGTG	prpE-qR	CGGATTCGGTCTGCCAGT
		СТСТА		AGT
ycgZ	ycgZ-qF	GCGGGAGCAATCACTC	ycgZ-qR	GCGTGTTCCAGTCGGCAA
		GTTAC		AG

ariR	ariR-qF	GTTAGAAGAAGAATCA	ariR-qR	TGTTGTTTCCAAGGAGTG
		GCAGTGTTAGG		TATCAGA
spy	spy-qF	ATGCCGCAGACACCAC	spy-qR	CGTCGGTCAGGTTCAGGT
		TACC		CTT
psuG	psuG-qF	TTACTGGGTCGTGAAG	psuG-qR	CGCCGCAATAATCATCGT
		GGCATAA		TGAAG
csrB	csrB-qF	GGAGTCAGACAACGAA	csrB-qR	GCGTCCTGCGTCATCCTCT
		GTGAACATC		Т
adiA	adiA-qF	CGCTGTCACAGGCTTCT	adiA-qR	TCAACCGCTTCGTCAATC
		TATATTCA		ACTTC
gadC	gadC-qF	ACTGGTTGTTAGTTTCC	gadC-qR	TGGTGCGTTCTGACTGTTG
		TGGTGGTA		ATTG
YbaT	baT-qF	TGGCGGTATTGTGGCG	baT-qR	CCAGCGTCAACAGGTACA
		ATGT		GTAAC
yidE	yidE-qF	CCGCTGATTACTGTTGG	yidE-qR	GCACCGCTGGTTGGATGA
		CATTCT		AG
cysB	cysB-qF	ATATCTTCAGCCACAGT	cysB-qR	CAGCCGCATCAACGACAT
		ACAACCAA		CA

Fig. S1 The catabolism pathway of L-arginine in *E. coli. ast*A, Arginine
N-succinyltransferase; *ast*B, N-succinylarginine dihydrolase; *ast*C, Succinylornithine
transaminase; *ast*D, Succinylglutamate-semialdehyde dehydrogenase; *ast*E,
Succinylglutamate desuccinylase.

Fig. S2 Cell growth against 8 g/L butanol stress: Application of a spotting assay

Fig. S3 Metabolomic cloud plot of strains in the presence and absence of butanol(Green, up/down-regulated metabolites; red, up/down-regulated metabolites; p<0.01; FC ≥ 1).

Fig. S4 Overview of the differentially expressed genes between BW25113 and BW25113- $\Delta ast E$ against 5 g/L butanol stress (Green, downregulated genes; red, upregulated genes; p<0.05; FC \geq 2).

Fig. S5 GO enrichment analysis of differentially expressed genes between BW25113 and BW25113-ΔastE after exposure to 5 g/L butanol stress.

Fig. S6 KEGG enrichment analysis of differentially expressed genes between BW25113 and BW25113-∆astE after exposure to 5 g/L butanol.

2-methylcitrate cycle

Fig. S7 KEGG enrichment analysis of significantly downregulated genes

Fig. S8 Different metabolites: Clustering heat map. analysis related to the different metabolites of BW25113-∆astE and BW25113 after exposure to 5 g/L butanol and metabolic pathways (red, upregulated; blue and green, downregulated)