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1. Modeling pressures of inlet meniscus and channel junction.

By Young–Laplace equation, the meniscus pressure (Pi) of inlet i is given as a function of the 

radius of curvature (Ri) and the surface tension (); see Figure S1a: 
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If the meniscus at inlet i does not exceed the edge of inlet i, by the Pythagorean theorem, Ri is a 

function of the height (hi) of the meniscus and the radius (ri) of inlet i: 
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Equation (S2) is obtained by the condition where inlet meniscus is pinned at the inlet rim. By 

inserting eq S2 into eq S1, we can rewrite Pi as 
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Then, the sum of flow rates passing through the channel junction is obtained by the analogy of 

Kirchhoff's current law (see Figure S1b): 
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where Ci is the fluidic conductance of channel i, which is the inverse of fluidic resistance; and 

PJCT
 is the channel junction pressure. Herein, channel fluidic resistance, Ri = aiLi
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where µj is dynamic viscosity of each solution that passes the microchannel, and wi Li, and h are 

the width, length, and height of the microchannels, respectively.
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Then, the junction pressure PJCT is
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Figure S1. (a) Meniscus of inlet and generation of Laplace pressure. (b) Diagram showing fluidic 

circuit. 

2. Modeling the relation between meniscus height and inlet pressure.

Owing to the similarity between fluidic resistance and electrical resistance, the flow rate (Qi) 

from the channel junction to inlet i via channel i can be expressed as (see Figure S1b)
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In step k, the volume of the meniscus (Vi,) at inlet i is obtained by
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The change rate of Vi is thus expressed as   
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Becuase dVi/dt is equal to Qi, by applying eq S6 into eq S8, we obtain

JCT
2 2

i

( ) 2 ( )
π( ( ( )) )

i i i

i

dh t C P P
dt r h t




 (S10)

3. Meniscus pinning condition at the inlet rim
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We experimentally confirmed the meniscus pinning at the inlet rim at the condition of (1) height-

to-radius ratio hi/ri < 0.5 and (2) solution contact angle >49°. A stereo microscope was used to 

observe the side view of menisci at the inlet rims. To have different values of the water contact 

angles, the PDMS surface was plasma treated. By adjusting the plasma power and treatment 

duration, we obtained equilibrium contact angles of 49, 70, and 105° on the PDMS surface. By 

the constant flow input (0.5 L/s) from a syringe pump, the inlet volume was increased and the 

inlet meniscus became more convex (Fig. S2a). The inlet meniscus remains pinned at the inlet 

rim up to 42 s. Then, the contact line of the meniscus moves over the rim. As such, we measured 

the maximum meniscus height (hmax) that maintains meniscus pinning for inlet radii (r) of 1 and 2 

mm and contact angles of 49, 70, and 105°. Fig. S2b shows that the value of hmax / r increases 

with increasing contact angle. 

Fig. S2. Experimental validation of meniscus pinning at inlet rims. (A) Experimental setup and 

time lapse photos of the inlet meniscus. (B) Ratio of maximum meniscus height to inlet radius 

(hmax / r) that preserve the meniscus pinning condition under the change of the contact angle. 

Here, symbols of rectangle and circle correspond to r = 1 and 2 mm, respectively. 

4. Change of meniscus height and volume of inlet by inlet radius
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We analyzed the effect of the size of channel 2 on VB2, under constant condition of C2. Fig. S3 

shows that VB2 decreases with the increase in the width (W) and height (h) of channel 2. When 

W and h increase, the length (L) of channel 2 increases to keep C2 constant. Because VCh2 = WhL, 

VCh2 increases. However, V2, which is the inlet meniscus volume, does not change because the 

other conditions do not change. Thus, VB2 decreases because VB2 = V2/VCh2.

Fig. S3. Effect of the size of channel 2 on the normalized backflow volume (VB2). W and h are 

the width and height of channel 2, respectively. Lines and points are the theoretical and 

experimental (n = 3) values, respectively. Here, Ci = 5, 9, and 10 (10−12) m5 N-1 s-1 (i = 1 to 3), 

and ri = 2, 1, and 1.25 mm. In step 3, PIi = 35, 35, and 75 Pa. 
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5. Change of meniscus height and volume of inlet by inlet radius

Fig. S4. Theoretical relation between r3 and initial meniscus volume (VI3) of inlet 3. The result is 

obtained by applying eq (S3) to (S7). P3 is set as 75 Pa. 
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6. Change of volume ratio and inlet pressures by radius of inlet 2

Fig. S5. Top graph shows the variation of the volume ratio (V2/VCh2) of the inlet meniscus volume 

(V2) and channel 2 volume (VCh2) in step 3. Bottom graphs show temporal change of inlet and 

junction pressures in step 3. In step 3, PIi values (i = 1 to 3) are 35, 35, and 75 Pa; r1 and r3 values 

are 2 and 1 mm; and Ci values are 5, 9, and 10 (10−12) m5 N-1 s-1, respectively.


