Electronic supplementary information for

Vanadyl β -tetrabromoporphyrin: Synthesis, crystal structure and its use as an efficient and selective catalyst for olefin epoxidation in aqueous medium

Tawseef Ahmad Dar^a, Reshu Tomar^a, Rasel Mohammad Mian^b, Muniappan Sankar^a and M. R. Maurya^a

Table of contents	Page No.
Figure S1. FT-IR spectrum of VOTPPBr ₄ (1) using KBr pellets.	3
Figure S2: (a) Simulated MALDI-TOF mass spectrum of 1 corresponding to [M+H] ⁺ ion	4
and (b) observed (zoomed in) MALDI-TOF mass spectrum of 1 corresponding to $[M+H]^+$	
ion in CH ₂ Cl ₂ using HABA matrix.	
Figure S3. Thermogram (TG), Differential thermal analysis (DTA) and Differential	4
thermogram (DTG) of (1) at a heating rate of 10 °C /minute scanned from 25 °C to 1000 °C.	
Figure S4. UV-Visible spectrum of recovered catalyst 1 in CH ₂ Cl ₂ at 298 K showing its	5
reversible nature.	
Figure S5. ⁵¹ V-NMR recorded in DMSO-d ₆ for (a) porphyrin 1 (b) oxidoperoxido species	5
$[VO(O_2)TPPBr_4]^-$ generated from 1 in presence of H_2O_2 and $NaHCO_3$ (c) on adding small	
amount of cyclohexene and (d) on adding excess amount of cyclohexene.	
Figure S6. GC trace corresponding to pure cyclohexene (substrate) as observed in gas	9
chromatography.	
Figure S7. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide	9
(product) chromatograms showing their respective percentages after 10 min. of reaction	
time.	
Figure S8. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide	10
(product) chromatograms showing their respective percentages after 20 min. of reaction	
time.	
Figure S9. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide	11
(product) chromatograms showing their respective percentages after 30 min. of reaction	
time.	
Figure S10. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide	12
(product) chromatograms showing their respective percentages after 30 min. of reaction	
time without catalyst (1) and without NaHCO ₃ .	
Figure S11. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide	13

(product) chromatograms showing their respective percentages after 30 min. of reaction	
time without catalyst (1).	
Figure S12. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide	14
(product) chromatograms showing their respective percentages after 30 min. of reaction	
time without NaHCO ₃ .	
Figure S13. GC trace corresponding to pure styrene (substrate) as observed in gas	14
chromatography.	
Figure S14. GC traces corresponding to styrene (substrate) and styrene epoxide (product)	15
chromatograms showing their respective percentages after 30 min. of reaction time.	
Figure S15. GC traces corresponding to bicyclo[2.2.1]heptene (substrate) and	16
bicyclo[2.2.1]heptene epoxide (product) chromatograms showing their respective	
percentages after 30 min. of reaction time.	
Figure S16. GC traces corresponding to cyclohexene epoxide (product) and dodecane	16
(internal standard).	
Table S1. UV-Visible spectral data of 1 in CH_2Cl_2 at 298 K.	3
Table S2. Electrochemical redox data of 1 in triple distilled DCM containing 0.1 M	3
$TBAPF_6$ as the supporting electrolyte at 298 K.	
Table S3. Selected average bond lengths and bond angles for $VOTPPBr_4$ (1) calculated on	6
the basis of DFT optimized geometry using LANL2DZ basis set.	
Table S4. Crystal structure data of μ -oxo dimer of VOTPPBr ₄ (1).	7
Table S5. Selected average bond lengths and bond angles for μ -oxo dimer of VOTPPBr ₄ (1)	8
obtained from single crystal XRD studies.	

Compound	B Band(s),nm (ε in Ltmol ⁻¹ cm ⁻¹)	Q band(s), nm (ε in Ltmol ⁻¹ cm ⁻¹)
VOTPPBr ₄ (1)	435 (1.94 ×10 ⁵)	560 (1.94 ×10 ⁴), 604 (6.32 ×10 ³).

Table S1. UV-Visible spectral data of **1** in CH₂Cl₂ at 298 K.

Table S2. Electrochemical redox data^a of 1 in triple distilled DCM containing 0.1 M TBAPF₆ as the supporting electrolyte at 298 K.

Porphyrin	Oxidation (V)	Reduction (V)
	P ^{1+/II+} P ^{0/I+}	P ^{0/-} P ^{1-/II-}
1	1.46 1.28	-0.84 -1.06

^avs.Ag/AgCl reference electrode, Pt working and Pt wire auxiliary electrode.

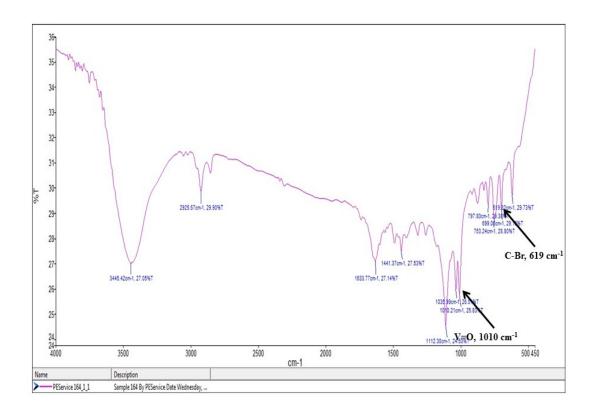
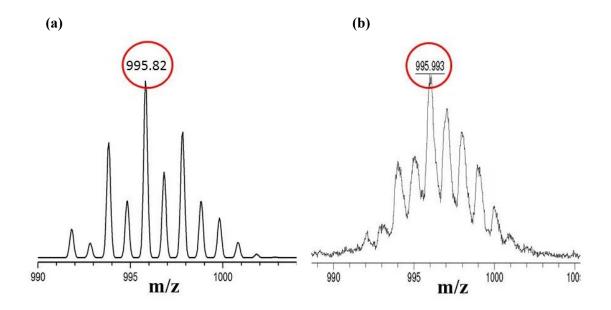
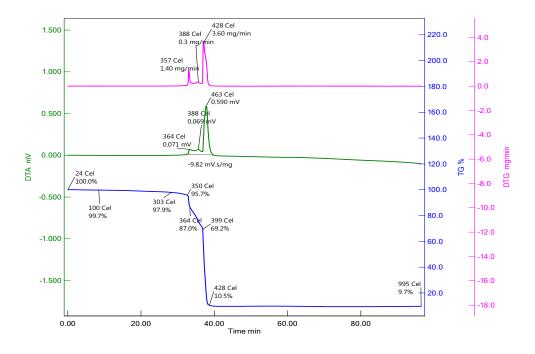




Figure S1. FT-IR spectrum of VOTPPBr₄ (1) using KBr pellets.

Figure S2: (a) Simulated MALDI-TOF mass spectrum of 1 corresponding to $[M+ H]^+$ ion and (b) observed (zoomed in) MALDI-TOF mass spectrum of 1 corresponding to $[M+ H]^+$ ion in CH₂Cl₂ using HABA matrix.

Figure S3. Thermogram (TG), Differential thermal analysis (DTA) and Differential thermogram (DTG) of (1) at a heating rate of 10 °C /minute scanned from 25 °C to 1000 °C.

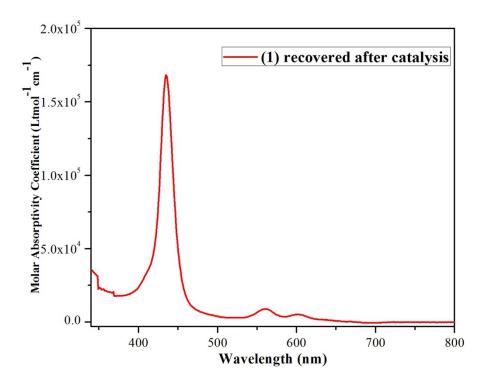
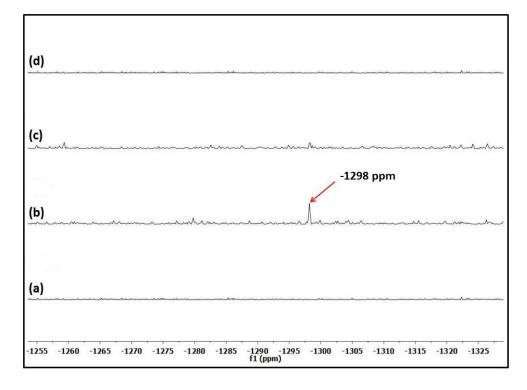
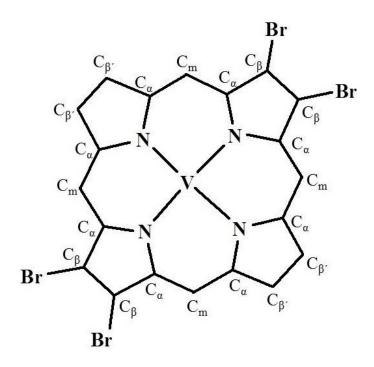




Figure S4. UV-Visible spectrum of recovered catalyst 1 in CH₂Cl₂ at 298 K showing its reversible nature.

Figure S5. ⁵¹V-NMR recorded in DMSO-d₆ for (a) porphyrin **1** (b) oxidoperoxido species $[VO(O_2)TPPBr_4]^-$ generated from **1** in presence of H_2O_2 and $NaHCO_3$ (c) on adding small amount of cyclohexene and (d) on adding excess amount of cyclohexene.

Table S3. Selected average bond lengths and bond angles for $VOTPPBr_4$ (1) calculated on the basis of DFT optimized geometry using LANL2DZ basis set.

Bond	Lengths (Å)	Bond	Angles (°)
N-C _a	1.401	$N-C_{\alpha}-C_{m}$	124.985
C_{α} - C_{β}	1.454	$N-C_{\alpha}-C_{\beta}$	108.48
$C_{\alpha}-C_{\beta}$	1.452	$N-C_{\alpha}-C_{\beta}$	109.47
$C_{\beta}-C_{\beta}$	1.379	$C_{\beta}-C_{\alpha}-C_{m}$	126.99
C_{β} ,- C_{β} ,	1.372	C_{β} ,- C_{α} - C_{m}	124.91
C _a -C _m	1.411	C_{α} - C_{β} - C_{β}	107.61
M-N	2.077	C_{α} - C_{β} ,- C_{β} ,	107.33
ΔC_{β}	0.855	C_{α} -N- C_{α}	106.725
$\Delta C_{\beta'}$	0.725	M-N-C _a	124.58
Δ24	0.383	N-M-N	152.145
ΔC_{α}	0.291		
ΔC_m	0.065		
ΔΝ	0.071		
ΔΜ	0.538		
V=O	1.379		

	1
Empirical	$C_{88}H_{48}Br_8N_8OV_2$
formula	
Formula wt.	1974.42
Crystal system	Monoclinic
Space group	P 2/c
<i>a</i> (Å)	29.844 (9)
<i>b</i> (Å)	13.822 (4)
<i>c</i> (Å)	19.654 (7)
α (°)	90
β (°)	107.719 (3)
γ (°)	90
Volume (Å ³)	7723 (4)
Ζ	8
D _{cald} (mg/m ³)	1.698
λ (Å)	0.71073
T (K)	100
No. of total	5465
reflns.	
No. of indepnt.	3875
reflns.	
R	4.75
R _w	11.44
CCDC No.	1880991

Table S4. Crystal structure data of μ -oxo dimer of VOTPPBr₄ (1).

Table S5. Selected average bond lengths and bond angles for μ -oxo dimer of VOTPPBr₄ (1) obtained from single crystal XRD studies.

	1		
Bond	Length (Å)		
N-C _a	1.378		
C_{α} - C_{β}	1.439		
C_{α} - C_{β} ,	1.454		
$C_{\beta}-C_{\beta}$	1.356		
C_{β} ,- C_{β} ,	1.342		
C _a -C _m	1.402		
M-N	2.082		
ΔC_{β}	0.663		
ΔC_{β}	0.535		
Δ24	0.3236		
ΔC_{α}	0.214		
ΔC_m	0.243		
ΔΝ	0.070		
ΔΜ	0.538		
V-V	3.534		
V=O	1.769		
Bond	Angle (°)		
$N-C_{\alpha}-C_{m}$	124.671		
$N-C_{\alpha}-C_{\beta}$	109.172		
$N-C_{\alpha}-C_{\beta}$	109.402		
$C_{\beta}-C_{\alpha}-C_{m}$	127.145		
C_{β} - C_{α} - C_{m}	124.700		
C_{α} - C_{β} - C_{β}	107.380		
C_{α} - C_{β} '- C_{β} '	107.265		
C_{α} -N- C_{α}	106.607		
M-N-C _a	124.691		
N-M-N	152.290		
	angle Relative to		
Mean Plane (°)			
meso-Ph	60.31, 54.79		
Pyrrole	14.185, 19.925		

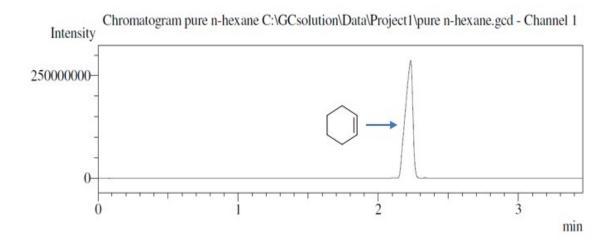
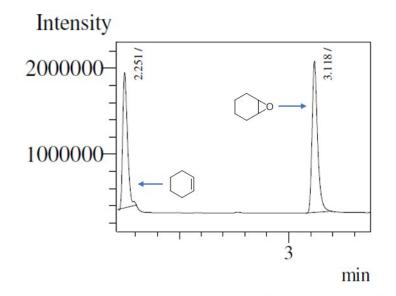
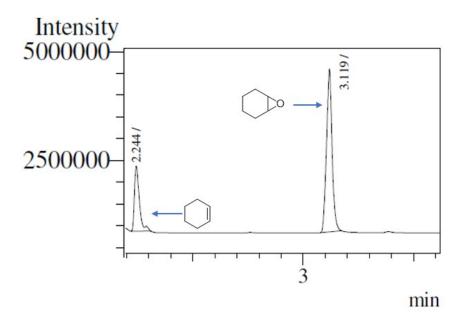
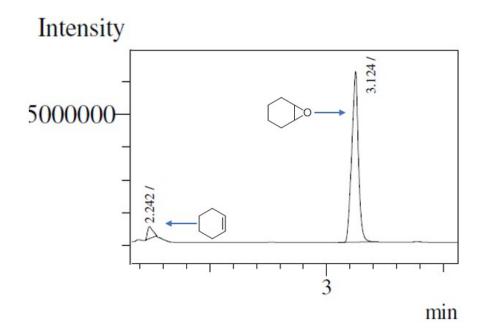




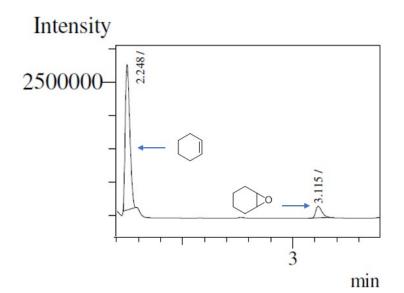
Figure S6. GC trace corresponding to pure cyclohexene (substrate) as observed in gas chromatography.

Name	Peak#	Ret.Time	Area	Area%
	1	2.251	2745024	43.6512
	2	3.118	3543522	56.3488
Total			6288546	100.0000


Figure S7. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide (product) chromatograms showing their respective percentages after 10 min. of reaction time.

sample information - Channel 1

Name	Peak#	Ret.Time	Area	Area%
	1	2.244	2777533	26.1562
	2	3.119	7841476	73.8438
Total			10619009	100.0000


Figure S8. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide (product) chromatograms showing their respective percentages after 20 min. of reaction time.

sample information - Channel 1

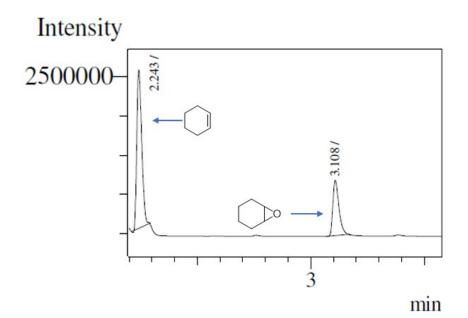
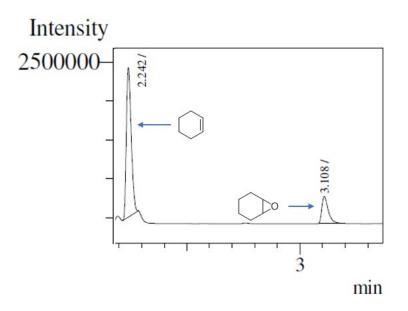

Name	Peak#	Ret.Time	Area	Area%
	1	2.242	655434	5.0729
	2	3.124	12264788	94.9271
Total			12920222	100.0000

Figure S9. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide (product) chromatograms showing their respective percentages after 30 min. of reaction time.

Name	Peak#	Ret.Time	Area	Area%
	1	2.248	3714525	90.4169
	2	3.115	393696	9.5831
Total			4108221	100.0000


Figure S10. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide (product) chromatograms showing their respective percentages after 30 min. of reaction time without catalyst (1) and without NaHCO₃.

sample information - Channel 1

Name	Peak#	Ret.Time	Area	Area%
	1	2.243	3622797	70.0237
	2	3.108	1550877	29.9763
Total			5173674	100.0000

Figure S11. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide (product) chromatograms showing their respective percentages after 30 min. of reaction time without catalyst (1).

Name	Peak#	Ret.Time	Area	Area%
	1	2.242	3416842	81.2830
	2	3.108	786795	18.7170
Total			4203637	100.0000

Figure S12. GC traces corresponding to cyclohexene (substrate) and cyclohexene epoxide (product) chromatograms showing their respective percentages after 30 min. of reaction time without NaHCO₃.

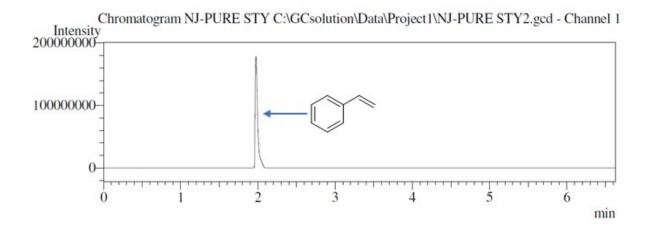
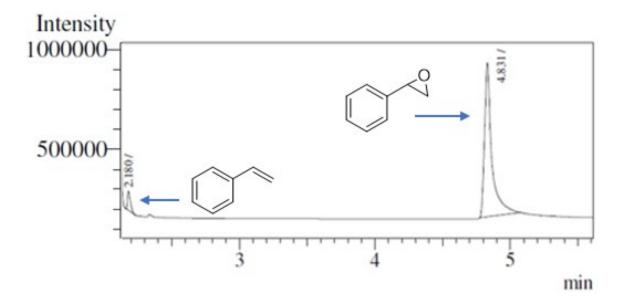
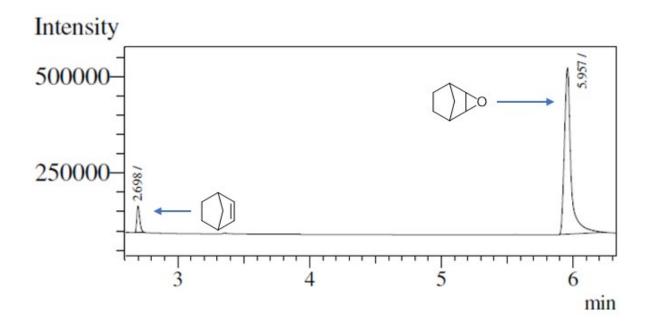




Figure S13. GC trace corresponding to pure styrene (substrate) as observed in gas chromatography.

Name	Peak#	Ret.Time	Area	Area%
	1	2.180	158744	4.4825
	2	4.831	3382678	95.5175
Total			3541422	100.0000

Figure S14. GC traces corresponding to styrene (substrate) and styrene epoxide (product) chromatograms showing their respective percentages after 30 min. of reaction time.

sample information - Channel 1

Name	Peak#	Ret.Time	Area	Area%
	1	2.698	124402	6.5446
	2	5.957	1776441	93.4554
Total			1900843	100.0000

Figure S15. GC traces corresponding to bicyclo[2.2.1]heptene (substrate) and bicyclo[2.2.1]heptene epoxide (product) chromatograms showing their respective percentages after 30 min. of reaction time.

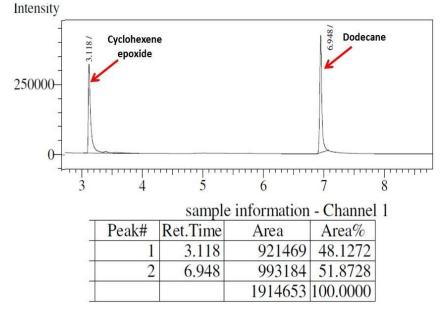


Figure S16. GC traces corresponding to cyclohexene epoxide (product) and dodecane (internal standard).