Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting information for

Intense-Pulsed-UV-Converted Perhydropolysilazane Gate Dielectrics for Organic Field-Effect Transistors and Logic Gates

Han Sol Back,^{1,3} Min Je Kim,² Jeong Ju Baek,¹ Do Hwan Kim,⁴ Gyojic Shin,^{1,*} Kyung Ho Choi,^{1,*} Jeong Ho Cho^{5,*}

¹Research Institute of Sustainable Manufacturing System, Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology, Cheonan-si 331-822, Chungcheongnam-do, Republic of Korea. ²SKKU Advanced Institute of Nanotechnology (SAINT), ³School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

⁴Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea. ⁵Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.

*G. Shin (gyshin@kitech.re.kr), K. H. Choi (khchoi@kitech.re.kr), and J. H. Cho (jhcho94@yonsei.ac.kr)

Figure S1. OM images of the PHPS films prepared at various number of intense pulses of the IPL irradiation as a function of electric field. The applied voltage was fixed to be 3.0 kV.

Figure S2. Current density of the PHPS films prepared at various number of intense pulses of the IPL irradiation as a function of electric field. The applied voltage was fixed to be 3.0 kV.

Figure S3. Top and cross-sectional SEM images of SiO₂ gate dielectric layer derived from PHPS by IPL.

Figure S4. Transfer characteristics of p-type pentacene (left) and n-type $PTCDI-C_8$ (right) OFETs with (a) the PHPS-derived SiO₂ films by thermal treatment (600 °C and 5 hours) and the commercial thermally-grown SiO₂.

Figure S5. Output characteristics of n-type PTCDI-C₈ OFETs with the PHPS-derived SiO₂ films by IPL irradiation (3.0 kV and 6,000 counts).