Enhanced gas selectivity induced by surface active oxygen in SnO/SnO₂ Hierarchical Structure at Different Temperature

Guilin Yin^{a,b}, Jianwu Sun^a, Fang Zhang^b, Weiwei Yu^c, Fang Peng^c, Yan Sun^c, Xin Chen^c, Lei Xu^a, Jing Lu^b, Chao Luo^b, Meiying Ge^{b, *}, Dannong He^{a,b,*}

^a School of Material Science and Engineering, Shanghai Jiao Tong University,

No.800 Dongchuan Road, Shanghai 200240, PR China

^b National Engineering Research Center for Nanotechnology, No. 28 East Jiang Chuan

Road, Shanghai 200241, PR China

^c National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics,

Chinese Academy of Sciences, No. 500 Yutian Road, Shanghai 200083, PR China

*Corresponding authors: Tel: 86 21 34291286; Fax: 86 21 34291125

E-mail: hdn_nercn@163.com (Dannong He), meiyingge@163.com (Meiying Ge)

Fig. S1 High-resolution XPS spectrum of Sn 3d (a) and O1s (b) of the SnO/SnO₂ composite

Fig. S2. The N_2 adsorption-desorption isotherms of the $\ensuremath{\text{SnO}}\xspace/\ensuremath{\text{SnO}}\xspace_2$ composite.

Fig. S3 SEM images with the mole ratio of HMTA : SnC_2O_4 (a) 0:1, (b) 1:4, (c) 1:2, (d) 2:1, (e) 4:1.

Fig. S4 XRD patterns and (b) peak position of SnO_2 (110) and SnO (002) of samples with different mole ratio of HMTA/SnC₂O₄.

Fig. S5 Energy band diagrams of the SnO/SnO_2 heterocontact.

Fig. S6. Gas response of SnO/SnO_2 composite with different HMTA and SnC_2O_4 ration for 100 ppm ethanol and acetone.

Fig. S7 Repeatability for (a) ethanol and (b) acetone at the optimum temperatures.