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Nitrogen desorption/adsorption measurements
The specific surface area (BET-method, multipoint determination) and pore size distributions
(BJH-method) were determined via nitrogen adsorption/desorption using an Autosorb-1 gas

sorption analyzer from Quantachrome. All samples were degassed for 20 hours at

85 °C under vacuum before characterization.

Table S1: Specific surface areas, average pore sizes and pore volumina of monoliths PAN-1 — PAN-6

determined by Ny-adsorption.

specific surface area average pore diameter pore volume*

[m*g] [nm] [cm®g]
PAN-1 28 47 0.19
PAN-2 30 30 0.22
PAN-3 22 32 0.17
PAN-4 24 41 0.26
PAN-5 225 43 2.45
PAN-6 106 44 1.18

*for pores smaller than 300 nm, measured at p/po= 0.99.
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Isotherms of the SPAN-monoliths
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Figure S1: Sorption isotherm of the monolith SPAN-1 as a result of the N,-adsorption/desorption

measurements, x-axis in logarithmic scale.
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Figure S2: Sorption isotherm of the monolith SPAN-2 as a result of the N,-adsorption/desorption

measurements, x-axis in logarithmic scale.

S2



70

60

Y
o

50

Volume [em®g™"]

S
o
8

20 s

10| p et

5107 10°
Relative Pressure p/pg

Volume [cm®g™]
w
o

N
o

- Adsorption

—_
o

. = Desorption
10" 100
Relative Pressure p/po
Figure S3: Sorption isotherm of the monolith SPAN-3 as a result of the N,-adsorption/desorption

measurements, x-axis in logarithmic scale.
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Figure S4: Sorption isotherm of the monolith SPAN-4 as a result of the N,-adsorption/desorption

measurements, x-axis in logarithmic scale.
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Figure S5: Sorption isotherm of the monolith SPAN-5 as a result of the N,-adsorption/desorption
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Figure S6: Sorption isotherm of the monolith SPAN-6 as a result of the N,-adsorption/desorption

measurements, x-axis in logarithmic scale.
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Pore size distributions of the SPAN-monoliths
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Figure S7: Pore size distribution of SPAN-1 (with Gaussian fit).
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Figure S8: Pore size distribution of SPAN-2 (with Gaussian fit).
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Figure S9: Pore size distribution of SPAN-3 (with Gaussian fit).
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Figure S10: Pore size distribution of SPAN-4 (with Gaussian fit).
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Figure 11: Pore size distribution of SPAN-5.
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Figure S12: Pore size distribution of SPAN-6.
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Mercury intrusion

The interparticle void volumes and the average diameters of the interparticle voids of the SPAN-
materials were determined via mercury intrusion, which was carried out on a POREMASTER 60-GT
(3P INSTRUMENTS GmbH & Co. KG in Odelzhausen, Germany). All samples were degassed for 3

hours at 80 °C before characterization.

Table S2: Interparticle void volumes and average sizes of the interparticle voids of the synthesized

SPAN-monoliths SPAN-1 - SPAN-6.

average diameter of the interparticle voids interparticle void volume

[nm] [cm®-g]
SPAN-1 180 0.21
SPAN-2 390 0.68
SPAN-3 420 0.71
SPAN-4 470 0.80
SPAN-5 470 2.10
SPAN-6 150 0.78
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Figure S13: Pore size distribution determined via mercury porosimetry of SPAN-1.
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Figure S14: Pore size distribution determined via mercury porosimetry of SPAN-2.
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Figure S15: Pore size distribution determined via mercury porosimetry of SPAN-3.
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Figure S16: Pore size distribution determined via mercury porosimetry of SPAN-4.

S10

1.5

0.5

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Volume intruded [cm3g]

Volume intruded [cm3g]



5.
4,
= —dv/dlog(d)
231
£ ~Volume intruded
o
s |
o
-
32
> |
)

10

10°

Pore Diameter [pm]

Figure S17: Pore size distribution determined via mercury porosimetry of SPAN-5.
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Figure S18: Pore size distribution determined via mercury porosimetry of SPAN-6.
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SEM pictures of SPAN-monoliths

Figure $20: SEM-pictures of the SPAN-monoliths SPAN-5 and SPAN-6.
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Figure S21: Comparison of the structure of a TIPS-based SPAN-monolith and a SIPS-based SPAN-

discharge capacitysws. [mAh/g]

monolith with a larger magnification.

12 14 16 18 2 22
tortuosity

Figure S22: Correlation between tortuosity and the specific discharge capacitysys, at 1 C (at cycle 30)

of SPAN 1-4.
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IR-spectroscopy
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Figure S23: Representative IR-spectrum of SIPS-derived monolith PAN-4 (black) and monolithic

SPAN-4 (red) The IR-spectra of all other SIPS-derived (S)PAN-monoliths looked similar.
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Figure S24: Representative IR-spectrum of TIPS-derived monolith PAN-5 (black) and monolithic

SPAN-5 (red), The IR-spectra of all other TIPS-derived (S)PAN-monoliths looked similar.
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Electrochemistry

Cyclovoltammetry: All cells were first charged at 0.1 C until a voltage of 3 V was reached.

Cyclovoltamograms were recorded in a range of 1 to 3 V with a slope of 0.05 mV/s.

Symmetrical Stress Test
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Figure S25: Symmetrical stresstest0.5C-1C-2C-3C-4C-6 C - 8C of a cell using monolith

SPAN-4 as active material and results of a cell using fibrous SPAN as active material for comparison.

Four Point Resistivity Measurements (van der Pauw Method)

Cathodes: Resistivity was measured on a Sigmatone H-100 Probe Station; a Keithley SourceMeter
2636B was used as electric current source. For resistivity measurements of the cathode coatings, the

coating was removed from the current collector and coated on a non-conducting Mylar foil.
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Table S3: Specific electronic conductivities of the cathode coatings based on monolithic SPAN 1 — 6

as active material.

specific electronic conductivity
(cathodes) [S-cm?]

SPAN-1 0.16
SPAN-2 0.072
SPAN-3 0.069
SPAN-4 0.074
SPAN-5 0.016
SPAN-6 0.050

Monolithic SPAN: Monolithic SPAN-materials were pressed into pellets, which were then
electrically contacted via four gold pins in a custom-made cell set-up connected to a Keithley
MultiMeter 2700. The conductivity of all monolithic SPAN-materials was < 108 S-cm-".
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