Supporting Information

Influence of Morphology of Monolithic Sulfur-Poly(acrylonitrile) Composites Used as Cathode Materials in Lithium-Sulfur Batteries on Electrochemical Performance

Tim Lebherz^{a,b}, Martin Frey^c, Andreas Hintennach^b, Michael R. Buchmeiser^{*a,d}

^a Institute of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany

^b Daimler AG, RD/EBZ, HPC G012-BB, 71034 Böblingen, Germany

^c Daimler AG, RD/EBB, HPC X461, 71059 Sindelfingen, Germany

^d German Institutes of Textile and Fiber Research (DITF) Denkendorf, 73770 Denkendorf,

Germany

Nitrogen desorption/adsorption measurements

The specific surface area (BET-method, multipoint determination) and pore size distributions (BJH-method) were determined via nitrogen adsorption/desorption using an *Autosorb-1* gas sorption analyzer from *Quantachrome*. All samples were degassed for 20 hours at 85 °C under vacuum before characterization.

Table S1: Specific surface areas, average pore sizes and pore volumina of monoliths PAN-1 – PAN-6determined by N_2 -adsorption.

specific surface area average pore diameter pore volume*

	[m²·g ⁻¹]	[nm]	[cm³·g-1]
PAN-1	28	47	0.19
PAN-2	30	30	0.22
PAN-3	22	32	0.17
PAN-4	24	41	0.26
PAN-5	225	43	2.45
PAN-6	106	44	1.18

*for pores smaller than 300 nm, measured at $p/p_0 = 0.99$.

Isotherms of the SPAN-monoliths

Figure S1: Sorption isotherm of the monolith SPAN-1 as a result of the N₂-adsorption/desorption measurements, x-axis in logarithmic scale.

Figure S2: Sorption isotherm of the monolith SPAN-2 as a result of the N₂-adsorption/desorption measurements, x-axis in logarithmic scale.

Figure S3: Sorption isotherm of the monolith SPAN-3 as a result of the N₂-adsorption/desorption measurements, x-axis in logarithmic scale.

Figure S4: Sorption isotherm of the monolith SPAN-4 as a result of the N₂-adsorption/desorption measurements, x-axis in logarithmic scale.

Figure S5: Sorption isotherm of the monolith SPAN-5 as a result of the N₂-adsorption/desorption measurements, x-axis in logarithmic scale.

Figure S6: Sorption isotherm of the monolith SPAN-6 as a result of the N₂-adsorption/desorption measurements, x-axis in logarithmic scale.

Pore size distributions of the SPAN-monoliths

Figure S7: Pore size distribution of SPAN-1 (with Gaussian fit).

Figure S8: Pore size distribution of SPAN-2 (with Gaussian fit).

Figure S9: Pore size distribution of SPAN-3 (with Gaussian fit).

Figure S10: Pore size distribution of SPAN-4 (with Gaussian fit).

Figure S12: Pore size distribution of SPAN-6.

Mercury intrusion

The interparticle void volumes and the average diameters of the interparticle voids of the SPANmaterials were determined via mercury intrusion, which was carried out on a *POREMASTER 60-GT* (3P INSTRUMENTS GmbH & Co. KG in Odelzhausen, Germany). All samples were degassed for 3 hours at 80 °C before characterization.

 Table S2: Interparticle void volumes and average sizes of the interparticle voids of the synthesized

 SPAN-monoliths SPAN-1 - SPAN-6.

	[nm]	[cm³·g⁻¹]
SPAN-1	180	0.21
SPAN-2	390	0.68
SPAN-3	420	0.71
SPAN-4	470	0.80
SPAN-5	470	2.10
SPAN-6	150	0.78

average diameter of the interparticle voids interparticle void volume

Figure S13: Pore size distribution determined via mercury porosimetry of SPAN-1.

Figure S14: Pore size distribution determined via mercury porosimetry of SPAN-2.

Figure S15: Pore size distribution determined via mercury porosimetry of SPAN-3.

Figure S16: Pore size distribution determined via mercury porosimetry of SPAN-4.

Figure S17: Pore size distribution determined via mercury porosimetry of SPAN-5.

Figure S18: Pore size distribution determined via mercury porosimetry of SPAN-6.

SEM pictures of SPAN-monoliths

Figure S19: SEM-pictures of the SPAN-monoliths SPAN-1 - SPAN-4.

Figure S20: SEM-pictures of the SPAN-monoliths SPAN-5 and SPAN-6.

Figure S21: Comparison of the structure of a TIPS-based SPAN-monolith and a SIPS-based SPAN-

monolith with a larger magnification.

Figure S22: Correlation between tortuosity and the specific discharge capacity_{sulfur} at 1 C (at cycle 30)

of SPAN 1-4.

IR-spectroscopy

Figure S23: Representative IR-spectrum of SIPS-derived monolith PAN-4 (black) and monolithic SPAN-4 (red) The IR-spectra of all other SIPS-derived (S)PAN-monoliths looked similar.

Electrochemistry

Cyclovoltammetry: All cells were first charged at 0.1 C until a voltage of 3 V was reached. Cyclovoltamograms were recorded in a range of 1 to 3 V with a slope of 0.05 mV/s.

Symmetrical Stress Test

Figure S25: Symmetrical stress test 0.5 C - 1 C - 2 C - 3 C - 4 C - 6 C - 8C of a cell using monolith **SPAN-4** as active material and results of a cell using fibrous SPAN as active material for comparison.

Four Point Resistivity Measurements (van der Pauw Method)

Cathodes: Resistivity was measured on a *Sigmatone H-100 Probe Station*; a Keithley *SourceMeter 2636B* was used as electric current source. For resistivity measurements of the cathode coatings, the coating was removed from the current collector and coated on a non-conducting *Mylar* foil.

 Table S3: Specific electronic conductivities of the cathode coatings based on monolithic SPAN 1 – 6
 as active material.

	(cathodes) [S·cm⁻²]
SPAN-1	0.16
SPAN-2	0.072
SPAN-3	0.069
SPAN-4	0.074
SPAN-5	0.016
SPAN-6	0.050

specific electronic conductivity

Monolithic SPAN: Monolithic SPAN-materials were pressed into pellets, which were then electrically contacted via four gold pins in a custom-made cell set-up connected to a *Keithley MultiMeter 2700.* The conductivity of all monolithic SPAN-materials was $< 10^{-8}$ S·cm⁻¹.