Supplementary Information

Photoaddition Reactions of *N*-Benzylglycinates Containing α-Trimethylsilyl Group with

Dimethyl Acetylenedicarboxylate: Competitive Formation of Pyrroles vs β -Enamino Esters

Suk Hyun Lim,¹ Amol B. Atar,¹ Gunoh Bae,² Kyung-Ryang Wee,² Dae Won Cho^{1*}

¹Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea (dwcho00@yu.ac.kr)

²Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea

Table of Contents

Experimental	S2 - S10
DCA fluorescence quenching experiment	S11 - S12
DCN fluorescence quenching experiment	S13 - S14
¹ H- and ¹³ C NMR spectra of unknown Compounds	S15 - S50

Experimental

¹H- and ¹³C-NMR (300 *MHz*) spectra were recorded on CDCl₃ solutions and chemical shifts were reported in parts per million relative to CHCl₃ peak (7.24 ppm for ¹H-NMR and 77.0 ppm for ¹³C-NMR) as an internal standard. High resolution (HRMS) mass spectra were obtained by use of quadrupole mass analyzer and electron impact ionization unless otherwise noted. All new compounds described were isolated as oils unless noted otherwise.

Synthesis of *N*- α -trimethylsilyl-*N*-benzylglycinates 16a-16g. Individual solutions of *N*- α -trimethylsilyl-*N*-benzylamines 15a-15g¹ (10 mmol) in acetonitrile (100 mL) containing K₂CO₃ (42 mmol) and ethyl bromoacetate (30 mmol) were stirred for 12 h at room temperature and concentrated in vacuo to give residues that were triturated with CH₂Cl₂. The triturates were dried and concentrated in vacuo to afford residues, which were subjected to silica gel column chromatography (EtOAc/hexane = 1:5 to 1: 8) to yield 16a² (70%), 16b³ (66%), 16c (66%), 16d³ (51%), 16e³ (74%), 16f (68%) and 16g³ (55%) respectively.

16c: ¹H-NMR 0.05 (s, 9H), 1.26 (t, 3H, *J* = 6.9 Hz), 2.24 (s, 2H), 2.30 (s, 3H), 2.34 (s, 3H), 3.25 (s, 2H), 3.75 (s, 2H), 4.14 (q, 2H, *J* = 6.9 Hz), 6.95 (d, 1H, *J* = 7.5 Hz), 6.96 (s, 1H), 7.19 (d, 1H, *J* = 7.5 Hz); ¹³C-NMR -1.6, 14.2, 19.0, 20.9, 45.5, 56.4, 59.8, 126.0, 129.8, 130.9, 134.0, 136.4, 137.3, 171.3; HRMS (EI) *m*/*z* 307.1965 (M⁺, C₁₇H₂₉NO₂Si requires 307.1968).

16f: ¹H-NMR 0.01 (s, 9H), 1.22 (t, 3H, *J* = 7.2 Hz), 2.16 (s, 2H), 3.22 (s, 2H), 3.73 (s, 2H), 4.12 (q, 2H, *J* = 7.2 Hz), 6.68-6.75 (m, 1H), 6.76-6.82 (m, 1H), 7.36-7.43 (m, 1H); ¹³C-NMR -1.7, 14.2,

45.6, 53.6, 57.0, 60.1, 103.4 (t, *J* = 102 Hz), 110.9 (dd, *J* = 83 Hz, 15 Hz), 121.9 (dd, *J* = 57 Hz, 14.4 Hz), 131.8 (dd, *J* = 37.7 Hz, 24.9 Hz), 161.2 (dd, *J* = 989.7 Hz, 47 Hz), 162.0 (dd, *J* = 983.6 Hz, 48 Hz), 171.1; HRMS (EI) *m*/*z* 315.1465 (M⁺, C₁₅H₂₃F₂NO₂Si requires 315.1466).

General procedure of photoreactions of *N*-α-trimethylsilyl-*N*-benzylglycinates and dimethyl acetylenedicarboxylate (DMAD) in the presence of photosensitizer. Preparative photochemical reactions were conducted using an apparatus consisting of a 450 W Hanovia medium vapor pressure mercury lamp equipped with a flint glass filter (>310 nm) in a water-cooled quartz immersion well surrounded by the solution being irradiated, consisting of solution (220 mL) containing glycinate (0.7 mmol, 3.2 mM), acethylene **17** (0.7 mmol, 3.2 mM), and photocatalyst (DCA (0.27 mM), DCN (0.32 mM), RB (0.32 mM), C₆₀ (0.16 mM)). The solution being irradiated was purged with oxygen before and during irradiations for the time periods given below. The photolysates were concentrated in vacuo to yield residues, which were subjected to silica gel column chromatography to isolate the pure photoproducts.

Photoreactions of oxygenated solution of 16a and 17. *In MeCN solution of DCA.* 5 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18a** (18 mg, 6%) and **19a** (117 mg, 50%). *In MeCN solution of DCN.* 60 min irradiation, column chromatography to yield **18a** (32 mg, 11%) and **19a** (96 mg, 41%). *In MeCN solution of RB.* 5 min irradiation, column chromatography to yield **18a** (32 mg, 11%) and **19a** (115 mg, 49%). *In toluene solution of C*₆₀. 20 min irradiation, column chromatography to yield **18a** (111 mg, 38%) and **19a** (49 mg, 21%).

18a: ¹H-NMR 0.26 (s, 9H), 1.19 (t, 3H, *J* = 7.2 Hz), 3.80 (s, 3H), 3.88 (s, 3H), 4.12 (q, 2H, *J* = 7.2 Hz), 5.77 (s, 2H), 6.78 (d, 2H, *J* = 7.2 Hz), 7.18-7.31 (m, 3H); ¹³C-NMR 1.2, 14.0, 51.5, 51.8, 52.6, 61.1, 122.7, 124.4, 125.2, 126.7, 127.3, 128.8, 138.4, 145.6, 159.6, 164.4, 166.9; HRMS (FAB) *m*/*z* 418.1680 (M+1, C₂₁H₂₈NO₆Si requires 418.1686).

19a: ¹H-NMR 1.23 (t, 3H, J = 6.9 Hz), 3.59 (s, 3H), 3.70 (s, 2H), 3.89 (s, 3H), 4.16 (q, 1H, J = 6.9 Hz), 4.38 (s, 2H), 4.70 (s, 1H), 7.22-7.34 (m, 5H); ¹³C-NMR 14.2, 50.2, 51.1, 53.2, 55.2, 61.7, 87.0, 128.1, 128.3, 129.0, 134.9, 154.5, 165.9, 167.9, 168.3; HRMS (FAB) m/z 336.1445 (M+1, C₁₇H₂₂NO₆ requires 336.1447).

Photoreactions of oxygenated solution of 16b and 17. *In MeCN solution of DCA.* 5 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18b** (12 mg, 4%) and **19b** (125 mg, 51%). *In MeCN solution of DCN.* 60 min irradiation, column chromatography to yield **18b** (12 mg, 11%) and **19b** (120 mg, 49%). *In MeCN solution of RB.* 5 min irradiation, column chromatography to yield **18b** (36 mg, 12%) and **19b** (115 mg, 47%). *In toluene solution of C60.* 10 min irradiation, column chromatography to yield **18b** (124 mg, 41%) and **19b** (46 mg, 19%).

18b: ¹H-NMR 0.27 (s, 9H), 1.19 (t, 3H, J = 6.9 Hz), 2.28 (s, 3H), 3.79 (s, 3H), 3.87 (s, 3H), 4.12 (q, 2H, J = 6.9 Hz), 5.72 (s, 2H), 6.67 (d, 2H, J = 7.8 Hz), 7.06 (d, 2H, J = 7.8 Hz); ¹³C-NMR 1.1, 13.9, 21.1, 51.3, 51.8, 52.5, 61.0, 122.5, 124.3, 125.0, 126.5, 129.4, 135.3, 136.8, 145.5, 159.5, 164.4, 166.8; HRMS (FAB) m/z 432.1841 (M+1, C₂₂H₃₀NO₆Si requires 432.1842).

19b: ¹H-NMR 1.23 (t, 3H, *J* = 7.2 Hz), 2.31 (s, 3H), 3.61 (s, 3H), 3.69 (s, 2H), 3.90 (s, 3H), 4.16 (q, 1H, *J* = 7.2 Hz), 4.34 (s, 2H), 4.70 (s, 1H), 7.13 (s, 4H); ¹³C-NMR 14.3, 21.3, 50.0, 51.1, 53.2, 55.0, 61.7, 86.8, 128.2, 129.7, 131.8, 138.2, 154.5, 165.9, 167.9, 168.4; HRMS (FAB) *m/z* 350.1603 (M+1, C₁₈H₂₄NO₆ requires 350.1604).

Photoreactions of oxygenated solution of 16c and 17. *In MeCN solution of DCA*. 5 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18c** (3 mg, 1%) and **19c** (127 mg, 50%). *In toluene solution of C60.* 10 min irradiation, column chromatography to yield **18c** (122 mg, 39%) and **19c** (38 mg, 15%).

18c: ¹H-NMR 0.21 (s, 9H), 1.18 (t, 3H, *J* = 7.2 Hz), 2.24 (s, 3H), 2.25 (s, 3H), 3.79 (s, 3H), 3.88 (s, 3H), 4.11 (q, 2H, *J* = 7.2 Hz), 5.63 (s, 2H), 5.98 (d, 1H, *J* = 7.8 Hz), 6.82 (d, 1H, *J* = 7.8 Hz), 6.95 (s, 1H); ¹³C-NMR 0.8, 13.8, 18.8, 20.9, 49.9, 51.6, 52.4, 60.9, 122.3, 123.5, 124.0, 126.6, 127.1, 130.8, 133.3, 133.8, 136.5, 145.8, 159.4, 164.2, 166.9; HRMS (EI) *m/z* 445.1922 (M⁺, C₂₃H₃₁NO₆Si requires 445.1921).

19c: ¹H-NMR 1.23 (t, 3H, *J* = 6.9 Hz), 2.18 (s, 3H), 2.27 (s, 3H), 3.60 (s, 3H), 3.63 (s, 2H), 3.88 (s, 3H), 4.15 (q, 1H, *J* = 6.9 Hz), 4.33 (s, 2H), 4.76 (s, 1H), 6.94-7.06 (s, 3H); ¹³C-NMR 14.1, 18.8, 20.9, 49.4, 50.9, 52.3, 52.9, 61.4, 87.2, 126.9, 128.6, 129.0, 131.5, 136.7, 138.0, 154.4, 165.7, 167.7, 168.5; HRMS (EI) *m*/*z* 363.1680 (M+1, C₁₉H₂₅NO₆ requires 363.1682).

Photoreactions of oxygenated solution of 16d and 17. *In MeCN solution of DCA*. 5 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18d** (3 mg, 1%) and **19d** (118 mg,

46%). *In toluene solution of C*₆₀. 10 min irradiation, column chromatography to yield **18d** (125 mg, 40%) and **19d** (46 mg, 18%).

18d: ¹H-NMR 0.27 (s, 9H), 1.19 (t, 3H, *J* = 7.2 Hz), 2.28 (s, 3H), 3.74 (s, 3H), 3.78 (s, 3H), 3.86 (s, 3H), 4.12 (q, 2H, *J* = 7.2 Hz), 5.68 (s, 2H), 6.70 (d, 2H, *J* = 8.7 Hz), 6.78 (d, 2H, *J* = 8.7 Hz); ¹³C-NMR 1.0, 13.8, 50.8, 51.6, 52.3, 55.1, 60.9, 114.0, 122.4, 124.2, 126.2, 126.3, 130.1, 145.2, 158.6, 159.4, 164.2, 166.6; HRMS (EI) *m/z* 447.1717 (M+1, C₂₂H₂₉NO₇Si requires 447.1713).

19d: ¹H-NMR 1.23 (t, 3H, *J* = 7.2 Hz), 3.61 (s, 3H), 3.67 (s, 2H), 3.77 (s, 3H), 3.90 (s, 3H), 4.16 (q, 1H, *J* = 7.2 Hz), 4.31 (s, 2H), 4.70 (s, 1H), 6.84 (d, 2H, *J* = 8.7 Hz), 7.17 (d, 2H, *J* = 8.7 Hz); ¹³C-NMR 14.1, 49.6, 51.0, 53.1, 54.5, 55.3, 61.5, 86.7, 114.2, 126.6, 129.5, 154.3, 159.5, 165.8, 167.8, 168.3; HRMS (EI) *m*/*z* 365.1477 (M+1, C₁₈H₂₃NO₇ requires 365.1475).

Photoreactions of oxygenated solution of 16e and 17. *In MeCN solution of DCA.* 10 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18e** (67 mg, 22%) and **19e** (79 mg, 32%). *In MeCN solution of DCN.* 90 min irradiation, column chromatography to yield **18e** (40 mg, 13%) and **19e** (99 mg, 40%). *In MeCN solution of RB.* 10 min irradiation, column chromatography to yield **18e** (37 mg, 12%) and **19e** (111 mg, 45%). *In toluene solution of C60.* 20 min irradiation, column chromatography to yield **18e** (110 mg, 36%) and **19e** (47 mg, 19%).

18e: ¹H-NMR 0.27 (s, 9H), 1.19 (t, 3H, *J* = 7.2 Hz), 3.79 (s, 3H), 3.87 (s, 3H), 4.13 (q, 2H, *J* = 7.2 Hz), 5.72 (s, 2H), 6.73-6.78 (m, 2H), 6.96 (t, 2H, *J* = 8.7 Hz); ¹³C-NMR 1.3, 14.0, 51.0, 51.9, 52.6, 61.2, 115.8 (d, *J* = 86.4 Hz), 122.9, 124.2, 126.9 (d, *J* = 32.1 Hz), 134.1 (d, *J* = 12.6 Hz), 145.6, 159.6,

161.8 (d, *J* = 976.2 Hz), 164.3, 166.8; HRMS (FAB) *m*/*z* 436.1589 (M+1, C₂₁H₂₇FNO₆Si requires 436.1592).

19e: ¹H-NMR 1.23 (t, 3H, J = 6.9 Hz), 3.60 (s, 3H), 3.69 (s, 2H), 3.89 (s, 3H), 4.16 (q, 1H, J = 6.9 Hz), 4.34 (s, 2H), 4.69 (s, 1H), 7.00 (t, 2H, J = 8.7 Hz), 7.20-7.24 (m, 2H); ¹³C-NMR 14.3, 50.3, 51.2, 53.3, 54.7, 61.9, 87.4, 116.0 (d, J = 85.8 Hz), 130.0 (d, J = 32.7 Hz), 130.8 (d, J = 12.3 Hz), 154.3, 162.8 (d, J = 982.2 Hz), 166.0, 167.9, 168.3; HRMS (FAB) m/z 354.1355 (M+1, C₁₇H₂₁FNO₆ requires 354.1353).

Photoreactions of oxygenated solution of 16f and 17. *In MeCN solution of DCA*. 10 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18f** (76 mg, 24%) and **19f** (88 mg, 34%). *In toluene solution of C*₆₀. 20 min irradiation, column chromatography to yield **18f** (102 mg, 32%) and **19f** (55 mg, 21%).

18f: ¹H-NMR 0.25 (s, 9H), 1.20 (t, 3H, J = 7.2 Hz), 3.79 (s, 3H), 3.87 (s, 3H), 4.14 (q, 2H, J = 7.2 Hz), 5.71 (s, 2H), 6.24-6.32 (m, 1H), 6.70-6.84 (m, 2H); ¹³C-NMR 0.7, 13.7, 46.0, 51.6, 52.4, 61.0, 103.7 (t, J = 100.2 Hz), 111.4 (dd, J = 84.8 Hz, 14.7 Hz), 121.8 (dd, J = 58.4 Hz, 15 Hz), 122.7, 123.9, 126.7, 126.8 (dd, J = 38.6 Hz, 22.2 Hz), 145.6, 158.8 (dd, J = 988.5 Hz, 46.8 Hz), 159.1, 162.0 (dd, J = 988.4 Hz, 46.2 Hz), 163.9, 166.4; HRMS (EI) m/z 453.1421 (M⁺, C₂₁H₂₅F₂NO₆Si requires 453.1419).

19f: ¹H-NMR 1.21 (t, 3H, *J* = 7.2 Hz), 3.57 (s, 3H), 3.74 (s, 2H), 3.86 (s, 3H), 4.14 (q, 2H, *J* = 7.2 Hz), 4.37 (s, 2H), 4.67 (s, 1H), 6.73-6.86 (m, 2H), 7.24-7.31 (m, 1H); ¹³C-NMR 14.0, 48.2 (d, J = 15.3 Hz), 50.8, 50.9, 53.0, 61.6, 87.6, 103.9 (t, *J* = 101.1 Hz), 111.7 (dd, *J* = 84.9 Hz, 15 Hz), 117.8

(dd, J = 57.2 Hz, 14.7 Hz), 130.65 (dd, J = 37.5 Hz, 20.7 Hz), 153.8, 160.7 (dd, J = 992.1 Hz, 47.7 Hz), 162.6 (dd, J = 993.5 Hz, 47.4 Hz), 165.5, 167.4, 167.9; HRMS (EI) m/z 371.1182 (M⁺, C₁₇H₁₉F₂NO₆ requires 371.1180).

Photoreactions of oxygenated solution of 16g and 17. *In MeCN solution of DCA.* 20 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **18g** (105 mg, 31%), **19g** (66 mg, 23%). *In MeCN solution of DCN.* 180 min irradiation, column chromatography to yield **18g** (71 mg, 21%) and **19g** (93 mg, 33%). *In MeCN solution of RB.* 30 min irradiation, column chromatography to yield **18g** (34 mg, 10%) and **19g** (121 mg, 43%). *In toluene solution of C*₆₀. 30 min irradiation, column chromatography to yield **18g** (105 mg, 31%) and **19g** (59 mg, 21%).

18g: ¹H-NMR 0.26 (s, 9H), 1.18 (t, 3H, *J* = 7.2 Hz), 3.80 (s, 3H), 3.87 (s, 3H), 4.12 (q, 2H, *J* = 7.2 Hz), 5.81 (s, 2H), 6.91 (d, *J* = 8.1 Hz), 7.53 (d, *J* = 8.1 Hz); ¹³C-NMR 1.0, 13.7, 51.1, 51.7, 52.4, 61.0, 122.8, 123.8, 125.3, 125.7 (q, *J* = 14.7 Hz), 126.9, 142.3, 145.5, 159.3, 164.0, 166.5; HRMS (EI) *m*/*z* 485.1479 (M⁺, C₂₂H₂₆F₃NO₆Si requires 485.1482).

19g: ¹H-NMR 1.24 (t, 3H, J = 7.2 Hz), 3.61 (s, 3H), 3.74 (s, 2H), 3.89 (s, 3H), 4.18 (q, 2H, J = 7.2 Hz), 7.38 (d, 2H, J = 8.4 Hz), 7.59 (d, 2H, J = 8.4 Hz); ¹³C-NMR 14.0, 50.7, 51.0, 53.1, 54.7, 61.7, 87.8, 125.8 (q, J = 14.7 Hz), 127.9, 139.0, 153.9, 165.5, 167.4, 168.0; HRMS (EI) m/z 403.1244 (M⁺, C₁₈H₂₀F₃NO₆ requires 403.1243).

Photoreactions of oxygenated solution of 20 and 17. *In MeCN solution of DCA*. 10 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield **19a** (29 mg, 10%), **22** (62 mg,

34%) and **23** (18 mg, 10%). *In MeCN solution of DCN*. 60 min irradiation, column chromatography to yield **19a** (41 mg, 14%), **22** (58 mg, 32%) and **23** (18 mg, 10%). *In MeCN solution of RB*. 10 min irradiation, column chromatography to yield **19a** (50 mg, 17%), **22** (53 mg, 29%) and **23** (20 mg, 11%). *In toluene solution of C60*. 30 min irradiation, column chromatography to yield **19a** (123 mg, 42%) and **22** (34 mg, 19%).

22: ¹H-NMR 1.25 (t, 3H, J = 7.2 Hz), 2.91 (s, 3H), 3.60 (s, 3H), 3.81 (s, 2H), 3.87 (s, 3H), 4.18 (q, 2H, J = 7.2 Hz), 4.65 (s, 1H); ¹³C-NMR 14.1, 39.2, 50.9, 53.0, 54.0, 61.6, 86.9, 154.3, 165.7, 167.7, 168.4; HRMS (EI) *m*/*z* 259.1052 (M⁺, C₁₁H₁₇NO₆ requires 259.1056).

23: ¹H-NMR 2.72 (s, 3H), 3.61 (s, 3H), 3.90 (s, 3H), 4.27 (s, 2H), 4.65 (s, 1H), 7.19-7.34 (m, 5H); ¹³C-NMR 36.8, 50.7, 52.9, 56.3, 84.6, 127.3, 127.8, 128.7, 135.5, 154.9, 166.0, 168.0; HRMS (EI) *m/z* 263.1154 (M⁺, C₁₄H₁₇NO₄ requires 263.1158).

Photoreactions of oxygenated solution of 21 and 17. In MeCN solution of DCA. 5 min irradiation, column chromatography (EtOAc: hexane = 1: 5) to yield 23 (112 mg, 61%). In MeCN solution of DCN. 60 min irradiation, column chromatography to yield 23 (111 mg, 60%). In MeCN solution of RB. 5 min irradiation, column chromatography to yield 23 (107 mg, 58%). In toluene solution of C₆₀. 10 min irradiation, column chromatography to yield 23 (144 mg, 78%).

References

1. S. H. Lim, H. C. Jeong, Y. Sohn, Y. -I. Kim, D. W. Cho, H. -J. Woo, I. -S. Shin, U. C. Yoon and P.

S. Mariano, J. Org. Chem., 2016, 81, 2460;

2. S. H. Lim, J. Yi, G. M. Moon, C. S. Ra, K. Nahm, D. W. Cho, K. Kim, T. G. Hyung, U. C. Yoon,

G. Y. Lee, S. Kim, J. Kim and P. S. Mariano, J. Org. Chem., 2014, 79, 6946.

3. S. H. Lim, D. W. Cho and P. S. Mariano, *Heterocycles*, 2016, 93, 202.

DCA-fluorescence quenching experiment by *N***-benzyl glycinate.** Fluorescence of MeCN solutions of DCA (3 mL, 2.5 x 10⁻⁶ M) containing 0, 0.2, 0.4, 1, 2 and 3 mM of the respective glycinate **16a, 16b, 16e** and **16f** were measured. The excitation wavelength was 365 nm. The spectra are displayed in Figure S1. The Stern-Volmer plots were determined by equation (1), where Φ_0 is the intensity of the fluorescence from the DCA in the absence of quencher (*i.e.*, *N*-benzylglycinate), Φ_q is the intensity of the DCA when the quencher is present at a concentration [Q], k_q is quenching rate constant and τ is lifetime of DCA. (τ_{S1} (DCA) =14.9 ns)

$$\Phi_0/\Phi_q = 1 + k_q \tau \left[Q \right] \qquad (1)$$

Figure S1. Fluorescence spectral changes of MeCN solutions of DCA (2.5 x 10^{-6} M) upon addition of *N*-benzylglycinates (a) **16a**, (b) **16b**, (c) **16e**, (d) **16f** ($\lambda_{ex} = 365$ nm) and Stern-Volmer plot of *N*-benzyl glycinates concentration dependence of the fluorescence intensity of DCA. (τ_{S1} (DCA) =14.9 ns)

DCN-fluorescence quenching experiment by *N*-benzylglycinate. Fluorescence of MeCN solutions of DCN (3 mL, 5 x 10^{-4} M) containing 0, 0.2, 0.4, 1, 2 and 3 mM of the respective glycinate **16a, 16b, 16e** and **16f** were measured. The excitation wavelength was 330 nm. The spectra are displayed in Figure S2. The Stern-Volmer plots were determined by equation (1), where Φ_0 is the intensity of the fluorescence from the DCN in the absence of *N*-benzylglycinate, Φ_q is the intensity of the DCN when the *N*-benzylglycinate is present at a certain concentration [Q], k_q is quenching rate constant and τ is lifetime of DCN. (τ_{S1} (DCN) =10.3 ns)

Figure S2. Fluorescence spectral changes of MeCN solutions of DCN (5 x 10^{-4} M) upon addition of *N*-benzylglycinates (a) **16a**, (b) **16b**, (c) **16e**, (d) **16f** ($\lambda_{ex} = 365$ nm) and Stern-Volmer plot of *N*-benzyl glycinates concentration dependence of the fluorescence intensity of DCA. (τ_{S1} (DCN) =10.3 ns)

16f

18a

19a

18b

18c

18d

18d

19e

18f

19f

20150817(5)

18g

19g

22

23

