Supporting Information for

Synthesis and thermally induced structural transformation of phthalimide and nitrile-functionalized benzoxazine: toward smart *ortho*-benzoxazine chemistry for low flammability thermosets

Kan Zhang,*^a Yuqi Liu,^a Lu Han,^b Jinyun Wang,^a and Hatsuo Ishida*^b

^aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China. E-mail: zhangkan@ujs.edu.cn ^bDepartment of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA. E-mail: hxi3@cwru.edu

Synthesis of 2-(2-Hydroxyphenyl)-isoindoline-1,3-dione (o-PP)

Into a 250 mL round flask were placed phthalic anhydride (7.41 g, 005 mol), *o*-aminophenol (5.41 g, 0.05 mol), and 60 ml of acetic acid. The mixture was stirred and refluxed for 6 h. After cooling to room temperature, the precipitate was filtered and washed with 200 mL of methanol. Removal of solvent by evaporation afforded an orange crystal (yield ca. 90%). ¹H NMR (DMSO), ppm: $\delta = 6.82$ -7.93 (8H, Ar), 9.76 (OH). IR spectra (KBr, cm⁻¹) = 3383 (O-H stretching), 1787, 1700 (Imide I), 1390 (imide II ,C-N stretching), 722 (C=O bending).

Synthesis of 2-(3-Phenyl-3,4-dihydro-2*H*-benzo[*e*][1,3]oxazin-8-yl)-isoindoline-1,3-dione (*o*PP-a)

Into a 100 mL round flask were added 30 mL of xylenes, aniline (1.40 g, 0.15mol), *o*-PP (3.59 g, 0.015mol), and paraformaldehyde (0.91g, 0.03 mol). The mixture was stirred at 120 °C for 6 h. The mixture was cooled to room temperature and precipitated into 100 mL of methanol. Removal of solvent by filtering afforded a yellow powder. (yield ca. 95%, m.p. 209 °C). ¹H NMR (DMSO), ppm: δ = 4.72 (s, Ar-CH₂-N, oxazine), 5.42 (s, O-CH₂-N, oxazine), 6.85-7.96 (12H, Ar). IR spectra (KBr), cm⁻¹: 1774, 1719 (imide I), 1497 (stretching of trisubstituted benzene ring), 1385 (imide II), 1231 (C-O-C asymmetric stretching), 1179 (C-N-C asymmetric stretching), 924 (out-of-plane C-H).

Figure S1. ¹H NMR spectrum of *o*PP.

Figure S2. ¹³C NMR spectrum of *o*PP.

Figure S3. ¹H NMR spectrum of *o*PP-a.

Figure S4. ¹³C NMR spectrum of *o*PP-a.

Figure S5. ¹H-¹³C HMQC spectrum of *o*PP-an.

Figure S6. DSC curves of *o*PP-a at different heating rates.

Figure S7. Representations of Kissinger and Ozawa methods for the calculation of activation energy for *o*PP-a.

Table S1. The Activation Energy of oPP-a obtained by Kissinger and Ozawa

	Methods.	
Sample	Kissinger	Ozawa
	Ea (kJ/mol)	<i>Ea</i> (kJ/mol)
oPP-a	86.0	89.5