Solar light active Mesoporous Cr-TiO2 for photo-degradation of Spent wash: An in-depth study of degradation reaction using LC-MS QTOF Technique.

Shrikant. P.Takle^a, Onkar A. Apine^b, Jalindar D. Ambekar^a, Sukeshani. L. Landge^c, Namdeo N. Bhujbal^c, Bharat B. Kale^a, and Ravindra S. Sonawane^a

^aCentre or Materials for Electronic Technlogy, Government of India, Panchavati, Off Pashan Road, Pune 411008, India.

^b Department of Biotechnology, Shivaji University, Kolhapur, 416004, India.

^c Annasaheb Magar Mahavidyalaya, Hadapsar, Pune 411028, India.

Corresponding Author : sonawane@cmet.gov.in

Electronic Supplementary Information (ESI)

Fig.S1. Thermo-gravimetric analysis of 5% Cr-TiO₂ powdered gel sample.

Fig. S2 (A) XRD pattern of (a)Undoped TiO_2 (b) 0.5% Cr-TiO₂ (c) 1% Cr-TiO₂ (d) 2% Cr-TiO₂, (e) 3% Cr-TiO₂, (f) 4% Cr-TiO₂ and (g) 5% Cr-TiO₂ samples obtained by Calcination at 400^oC. and (B) Enlarged version XRD pattern of (110) plane (a) Undoped TiO_2 and (b) 5% Cr-TiO₂

Fig.S3. Nitrogen sorption isotherm of (a) Cr-TiO₂ at 500^oC and (b) Cr-TiO₂ at 600^oC. In inset BJH pore size distribution curve of (a) 5% Cr-TiO₂ at 500^oC and (b) 600^oC of 5% Cr-TiO₂ catalyst

Fig.S4. t plot of mesoporous catalyst (a) Undoped TiO₂. (b) 5% Cr-TiO₂.

Fig.S5. FT-IR spectra of (a)Undoped TiO₂ (b) 0.5% Cr-TiO₂ (c) 1% Cr-TiO₂ (d) 2% Cr-TiO₂, (e) 3% Cr-TiO₂, (f) 4% Cr-TiO₂ and (g) 5% Cr-TiO₂ samples

Fig.S6. UV Visible spectra of spentwash solution after irradiation with sunlight (A) for 5% Cr- TiO₂ catalyst and (B) for P-25 Degussa Catalyst for (a) 0 hr, (b) 1 hr, (c) 2 hr, (d) 2.30 hr, (e) 3 hr, (f) 4 hr and (g) 5 hr.

Fig. S7. Degradation of spent wash using 5% Cr-TiO $_2$ catalyst calcined at different temperature.

Fig.S8 Negative ESI TIC fragmentation spectra of spentwash after irradiation with sunlight (a) Undoped TiO₂, (b) 5% Cr-TiO₂.

Fig.S9.Positive ESI TIC fragmentation spectra of spentwash after irradiation with sunlight (a) Undoped TiO₂, (b) 5% Cr-TiO₂

Fig. S10 Reduction of TOC during photocatalytic trial on spentwash for (a) Undoped TiO_2 , (b) Degussa P-25, (c) 5% Cr-TiO₂ catalyst.

Fig. S11. XRD pattern of (a) 5% Cr-TiO₂ calcined at 400° C and (b) 5% Cr-TiO₂ recovered after 3rd cycles of photo-degradation of spentwash solution under sunlight

Fig. S12. Degradation of spent wash using 5% Cr-TiO $_2$ catalyst under natural sunlight for 3 consecutive cycles.

Fig. S13 Recovery of 5% Cr-TiO $_2$ catalyst with respect to number of cycle.