Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

A Facile Method to Synthesis High Performance CoV₂O₆ as Supercapacitor

Cathode

Xinrui He,† Jing Jiang,† Hanqing Tian, Yi Niu, Zhipeng Li, Yalin Hu, Jiahao Fan, and Chao Wang*

State Key Laboratory of Electronic Thin Films and Integrated Devices, School of ElectronicScience and Engineering, University of Electronic Science and Technology of China, Chengdu611731,China.E-mail:cwang@uestc.edu.cn

Fig. S1. XPS patterns of (a) full scan of the CoV_2O_6 . (b) Co 2p, (c) V 2p and (d) O 1s

Fig. S2. N_2 adsorption and desorption isotherms and the corresponding pore size distributions of (a, c) CoV_2O_6 •4H₂O and (b, d) CoV_2O_6 .

Fig. S3 SEM images of CoV₂O₆

Fig. S4 SEM images of CoV_2O_6 •4H₂O

Fig. S5 SEM patterns of CoV_2O_6 after 20,000 cycles

Fig. S6 EDS spectrum of CoV_2O_6 •4H₂O

Fig. S7. EIS curves of the CoV_2O_6 (inset shows the magnified) after 20,000

cycles

Element	Со	V
Element content %	24.6	38.1

Table S1. the Element Content of Co and V

Description	Specific	Cycling	High Rate	Reference
	Capacity	Stability	Capacity	
	(F g ⁻¹)	(%)	(F g ⁻¹)	
CoV ₂ O ₆	306.6 F g ⁻¹	83.30% after	219.2 F g ⁻¹	This work
	at 1 A g ⁻¹	20,000 cycles	at 20 A g ⁻¹	
CoV ₂ O ₆ ¹	223 F g ⁻¹ at	123.3% after	none	[1]
	1 A g ⁻¹	15,000 cycles		
CoV ₂ O ₆ ²	114.1 F g ⁻¹	81.91% after	none	[2]
	at 1mA cm ⁻²	1,000 cycles		
Pristine	219 F g ⁻¹ at	none	none	[3]
$ZnV_3O_8{}^3$	0.8 A g ⁻¹			

Table S2. A survey of electrochemical performance comparison

References:

- 1. Y. Wang, H. Chai, H. Dong, J. Xu, D. Jia and W. Zhou, *ACS applied materials & interfaces*, 2016, **8**, 27291-27297.
- Y. Teng, Y. Li, D. Yu, Y. n. Meng, Y. Wu, X. Zhao and X. Liu, ChemistrySelect, 2019, 4, 956-962.
- 3. W. H. Low, P. S. Khiew, S. S. Lim, C. W. Siong, C. H. Chia and E. R. Ezeigwe, *Journal of Alloys and Compounds*, 2019.