Electronic Supplementary Information (ESI)

I₂-Catalyzed Intramolecular Oxidative Amination of C(sp³)-H Bond: Efficient Access to 3-Acylimidazo[1,2-*a*]pyridines Under Neat Condition

Lilan Huang,^{+a} Wenqing Yin, ^{+a} Jian Wang,^b Chunfang Gan,^a Yanmin Huang,^a Chusheng Huang,^{*a} Yimiao He^{*a}

b. Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P. R. China

Table of contents

1. General information	2
2. Synthesis and characterization of starting materials 1a-1v	2
2.1 Synthesis of starting materials 1a-1v	2
2.2 Product characterization	4
3. General procedure and product characterization	12
3.1 General procedure	12
3.2 Product Characterization	13
4. Diversification of 3-acylimidazo[1,2-a]pyridines	20
5. Contral Experiments	24
6. References	24
7. Copies of 1H NMR and 13C NMR Spectra	26

a. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China. E-mail: heyimiao@gxtc.edu.cn; huangcs@gxtc.edu.cn.

1. General information

Reactions were monitored by using thin-layer chromatography (TLC) on commercial silica gel plates (GF254). Visualization of the developed plates was performed under UV lights (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded on Bruker AV300, 400, 500 and 600 MHz spectrometers. Chemical shifts (δ) were reported in ppm referenced to the CDCl₃ residual peak (δ 7.26) or the DMSO-d₆ residual peak (δ 2.50) for ¹H NMR. Chemical shifts of ¹³C NMR were reported relative to CDCl₃ (δ 77.0) or D₆-DMSO (δ 39.5). The following abbreviations were used to describe peak splitting patterns when appropriate: br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constant, *J*, was reported in Hertz unit (Hz). Melting points (mp) were taken on a MEL-TEMP® apparatus and were uncorrected. High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS spectrometer.

2. Synthesis and characterization of starting materials 1a-1v

2.1 Synthesis of starting materials 1a-1v

Method I: The material 1a was prepared according to the following method.

1-phenyl-3-(pyridin-2-ylamino)propan-1-one (1a). A sealed tube was equipped with a magnetic stir bar and was charged with pyridin-2-amine **S1** (339 mg, 3.6 mmol), 3-chloro-1-phenylpropan-1-one **S2** (506 mg, 3.0 mmol), triethylamine (0.6 mL, 4.2 mmol) in ethanol (2 mL). The reaction mixture was stirred under 150 W microwave irradiation at 100 °C for 5 minutes. After the reaction was complete (as judged by TLC analysis), the solution was cooled to room temperature and extracted with EtOAc (20 mL) and washed with brine for three times. Then the combined organic layers were dried over Na₂SO₄ and removed the volatiles in vacuo. The residues were purified by column chromatography on silica gel (petroleum ether/EtOAc = 5 : 1) to afford the desired product 1-phenyl-3-(pyridin-2-ylamino)propan-1-one **1a** (461 mg, 68% yield) as a white solid.

1b-1i, 1l-1n, 1r-1v were prepared according to the procedure described for 1a.

Method II: The material 1j was prepared according to the following method.

A sealed tube was equipped with a magnetic stir bar and was charged with 1-(*m*-tolyl)ethan-1-one **S3** (402 mg, 3 mmol), paraformaldehyde (900 mg), dimethylamine hydrochloride (489 mg, 6 mmol) in ethanol (2 mL). The reaction mixture was stirred under 150 W microwave irradiation at 100 °C until the color turned out to be yellow. The solution was cooled to room temperature, to which a sat. aqueous NaHCO₃ was added dropwise until there was no CO₂ release. Then the mixture was extracted with EtOAc (20 mL) and washed with brine for three times, and the resulted organic layers were dried over Na₂SO₄ and removed the volatiles under reduced pressure to give the crude product **S4**.

A sealed tube was equipped with a magnetic stir bar and charged with 1-(*m*-tolyl)ethan-1-one **S4**, pyridin-2-amine (338 mg, 3.6 mmol) in ethanol (2 mL). The reaction mixture was stirred under 150 W microwave irradiation at 100 °C until the reaction was complete (as judged by TLC analysis). Then the reaction mixture was cooled to room temperature and extracted with EtOAc (20 mL) and washed with brine for three times, and the resulted organic layers were dried over Na₂SO₄ and removed the volatiles under reduced pressure. The residues were purified by column chromatography on silica gel (petroleum ether/EtOAc = 5 : 1) to give the desired product **1j** (389 mg, 54% yield) as a white solid.

1k, 1o and 1q were prepared according to procedures described for 1j.Method III: The material 1p was prepared according to the following method.

A sealed tube was equipped with a magnetic stir bar and charged with pyridin-2-amine (283 mg, 3 mmol), ethyl vinyl ketone (379mg, 4.5mmol) and stirred overnight at room temperature. After the reaction was complete (as determined by TLC analysis), the reaction mixture was extracted with EtOAc (20 mL) and washed with brine for three

times, and the resulted organic layers were dried over Na_2SO_4 and evaporated under reduced pressure. The residues were purified by column chromatography on silica gel (petroleum ether/EtOAc = 5 : 1) to give the desired product **1p** (401 mg, 75% yield) as a white solid.

2.2 Product characterization

Yield: 57%. Mp 82-84 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.10 (d, *J* = 5.1 Hz, 1H), 8.00-7.96 (m, 2H), 7.59 (t, *J* = 5.1 Hz, 1H), 7.56-7.47 (m, 2H), 7.45-7.36 (m, 1H), 6.58-6.54 (m, 1H), 6.41 (d, *J* = 8.4 Hz, 1H), 4.97 (br s, 1H), 3.84 (t, *J* = 6.0 Hz, 2H), 3.34 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 199.6, 158.3, 147.9, 137.3, 136.8, 133.3, 128.6, 128.1, 112.8, 108.0, 38.2, 36.6; HRMS (ESI): Exact mass calcd for C₁₄H₁₄N₂O [M+H]⁺, 227.1179; Found: 227.1176.

3-((5-methylpyridin-2-yl)amino)-1-phenylpropan-1-one (1b)

Yield: 61%. Mp 96-97 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.00-7.93 (m, 3H), 7.60-7.54 (m, 1H), 7.49-7.44 (m, 2H), 7.23 (d, *J* = 8.7 Hz, 1H), 6.35 (d, *J* = 8.4 Hz, 1H), 4.80 (br s, 1H), 3.80 (t, *J* = 6.0 Hz, 2H), 3.32 (t, *J* = 6.0 Hz, 2H), 2.18 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 199.7, 156.5, 147.4, 138.4, 136.8, 133.3, 128.6, 128.0, 121.6, 107.7, 38.2, 36.9, 17.4; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₂O [M+H]⁺, 241.1335; Found: 241.1332.

3-((5-fluoropyridin-2-yl)amino)-1-phenylpropan-1-one (1c)

Yield: 71%. Mp 93-94 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.00-7.96 (m, 2H), 7.62-7.56 (m, 1H), 7.51-7.45 (m, 2H), 7.21-7.15 (m, 2H), 6.39-6.35 (m, 1H), 4.91 (br s, 1H), 3.80 (t, *J* = 12.3 Hz, 2H), 3.32 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.8, 155.0, 153.9, 152.6, 136.7, 134.3, 134.2, 133.4, 128.6, 128.0, 125.3, 125.2, 110.0, 108.4, 38.0, 37.1; HRMS (ESI): Exact mass calcd for C₁₄H₁₃FN₂O [M+H]⁺, 245.1085; Found: 245.1087.

3-((5-chloropyridin-2-yl)amino)-1-phenylpropan-1-one (1d)

Yield: 72%. Mp 110-112 °C. Pale yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 8.01 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.57-7.54 (m, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 1H), 6.32 (d, *J* = 8.4 Hz, 1H), 5.00 (br s, 1H), 3.78 (t, *J* = 6.0 Hz, 2H), 3.29 (t, *J* = 5.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.5, 156.6, 146.2, 137.0, 136.6, 133.4, 128.7, 128.0, 119.6, 108.9, 37.9, 36.7; HRMS (ESI): Exact mass calcd for C₁₄H₁₃ClN₂O [M+H]⁺, 261.0789; Found: 261.0792.

3-((5-bromopyridin-2-yl)amino)-1-phenylpropan-1-one (1e)

Yield: 72%. Mp 110-112 °C. Pale yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 8.13 (s, 1H), 8.00-7.96 (m, 2H), 7.62-7.56 (m, 1H), 7.50-7.42 (m, 3H), 6.32 (d, *J* = 9.0 Hz, 1H), 5.04 (br s, 1H), 3.81 (t, *J* = 6.0 Hz, 2H), 3.32 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (75 MHz, 14), 5.04 (br s, 14), 5.

CDCl₃): δ 199.5, 156.9, 148.5, 139.6, 136.7, 133.4, 128.7, 128.0, 109.6, 106.9, 38.0, 36.7; HRMS (ESI): Exact mass calcd for C₁₄H₁₃BrN₂O [M+H]⁺, 305.0290; Found: 305.0287.

phenyl-3-((5-(trifluoromethyl)pyridin-2-yl)amino)propan-1-one (1f)

Yield: 69%. Mp 126-128 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.35 (s, 1H), 8.00-7.96 (m, 2H), 7.63-7.46 (m, 4H), 6.42 (d, J = 8.7 Hz, 1H), 5.40 (br s, 1H), 3.90 (t, J = 6.0 Hz, 2H), 3.35 (t, J = 5.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.3, 159.8, 145.9, 134.1, 133.5, 128.7, 128.0, 107.4, 47.4, 37.9, 36.3; HRMS (ESI): Exact mass calcd for C₁₅H₁₃F₃N₂O [M+H]⁺, 295.1053; Found: 295.1049.

methyl 6-((3-oxo-3-phenylpropyl)amino)nicotinate (1g)

Yield: 48%. Mp 161-162 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.77 (s, 1H), 7.99-7.93 (m, 3H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 6.37 (d, *J* = 8.7 Hz, 1H), 5.55 (br s, 1H), 3.94-3.87 (m, 5H), 3.35 (t, *J* = 5.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 205.3, 166.4, 160.3, 151.4, 138.1, 133.5, 128.7, 128.0, 115.0, 51.6, 38.0, 36.4; HRMS (ESI): Exact mass calcd for C₁₆H₁₆N₂O₃ [M+H]⁺, 285.1234; Found: 285.1229.

3-((4-methylpyridin-2-yl)amino)-1-phenylpropan-1-one (1h)

Yield: 65%. Mp 88-89 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.00-7.96 (m, 3H), 7.61-7.55 (m, 1H), 7.50-7.44 (m, 2H), 6.42 (d, *J* = 5.1 Hz, 1H), 6.23 (s, 1H), 4.87 (br s, 1H), 3.85-3.78 (m, 2H), 3.53-3.31 (m, 2H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 199.6, 158.5, 148.2, 147.6, 136.7, 133.3, 128.6, 128.0, 114.5, 108.1, 38.2, 36.6, 21.1; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₂O [M+H]⁺, 241.1335; Found: 241.1334.

3-((4-methoxypyridin-2-yl)amino)-1-phenylpropan-1-one (1i)

Yield: 63%. Mp 106-107 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 7.97-7.92 (m, 3H), 7.59-7.54 (m, 1H), 7.45 (t, *J* = 7.2 Hz, 2H), 6.20 (d, *J* = 6.0 Hz, 1H), 5.87 (s, 1H), 5.00 (br s, 1H), 3.82-3.76 (m, 5H), 3.31 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 199.6, 167.0, 160.2, 149.1, 136.7, 133.3, 128.6, 128.0, 101.7, 91.2, 54.9, 38.2, 36.8; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₂O₂ [M+H]⁺, 257.1285; Found: 257.1283.

3-(pyridin-2-ylamino)-1-(m-tolyl)propan-1-one (1j)

Yield: 30%. Mp 87-88 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.11 (d, *J* = 5.4 Hz, 1H), 7.79-7.76 (m, 2H), 7.42-7.35 (m, 3H), 6.59-6.56 (m, 1H), 6.40 (d, *J* = 8.4 Hz, 1H), 4.93 (br s, 1H), 3.82 (t, *J* = 6.0 Hz, 2H), 3.32 (t, *J* = 6.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 199.8, 147.9, 137.2, 136.7, 134.1, 128.6, 128.5, 125.2, 112.7, 108.0, 38.2, 36.6, 21.3; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₂O [M+H]⁺, 241.1335; Found: 241.1340.

3-(pyridin-2-ylamino)-1-(p-tolyl)propan-1-one (1k)

Yield: 33%. Yellow oil. ¹H NMR (600 MHz, CDCl₃): δ 8.07 (d, *J* = 5.4 Hz, 1H), 7.75 (t, *J* = 7.2 Hz, 2H), 7.37-7.31 (m, 3H), 6.53 (t, *J* = 6.0 Hz, 1H), 6.37 (d, *J* = 8.4 Hz, 1H), 4.92 (br s, 1H), 3.78 (t, *J* = 6.0 Hz, 2H), 3.29 (t, *J* = 6.0 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 199.8, 158.3, 147.9, 138.4, 137.3, 136.7, 134.1, 128.6, 128.5, 125.3, 112.8, 108.0, 38.2, 36.6, 21.3; HRMS (ESI): Exact mass calcd for C₁₅H₁₆N₂O [M+H]⁺, 241.1335; Found: 241.1340.

1-(4-fluorophenyl)-3-(pyridin-2-ylamino)propan-1-one (11)

Yield: 80%. Mp 85-86 °C. Pale yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 8.04 (s, 1H), 7.94-7.91 (m, 2H), 7.32-7.29 (m, 1H), 7.07-7.03 (m, 2H), 6.49 (t, *J* = 7.2 Hz, 1H), 6.34 (d, *J* = 8.4 Hz, 1H), 5.08 (br s, 1H), 3.75 (t, *J* = 6.0 Hz, 2H), 3.23 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 198.0, 166.6, 164.9, 158.2, 147.9, 137.2, 133.2, 130.7, 130.6, 115.8, 115.6, 112.8, 108.0, 38.1, 36.6; HRMS (ESI): Exact mass calcd for C₁₄H₁₃FN₂O [M+H]⁺, 245.1085; Found: 245.1087.

1-(4-chlorophenyl)-3-(pyridin-2-ylamino)propan-1-one (1m)

Yield: 62%. Mp 100-101 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.10 (d, J = 6.9 Hz, 1H), 7.95-7.90 (m, 2H), 7.47-7.36 (m, 3H), 6.59-6.55 (m, 1H), 6.40 (d, J = 8.4 Hz, 1H), 4.90 (br s, 1H), 3.83 (t, J = 6.0 Hz, 2H), 3.31 (t, J = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 198.4, 147.9, 139.7, 137.2, 135.0, 129.5, 128.9, 112.8, 108.1, 38.2, 36.5; HRMS (ESI): Exact mass calcd for C₁₄H₁₃ClN₂O [M+H]⁺, 261.0789; Found: 261.0794.

1-(4-bromophenyl)-3-(pyridin-2-ylamino)propan-1-one (1n)

Yield: 74%. Mp 96-97 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.10 (d, *J* = 5.1 Hz, 1H), 7.83 (d, *J* = 9.3 Hz, 2H), 7.61 (d, *J* = 9.0 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 6.59-6.55 (m, 1H), 6.40 (d, *J* = 7.5 Hz, 1H), 4.91 (br s, 1H), 3.82 (t, *J* = 6.3 Hz, 2H), 3.30 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 198.6, 158.2, 147.9, 137.2, 135.4, 131.9, 129.6, 128.5, 112.9, 108.1, 38.2, 36.5; HRMS (ESI): Exact mass calcd for C₁₄H₁₃BrN₂O [M+H]⁺, 305.0284; Found: 305.0289.

3-(pyridin-2-ylamino)-1-(thiophen-2-yl)propan-1-one (10)

Yield: 62%. Mp 86-88°C. White solid. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 4.4 Hz, 1H), 7.71 (d, *J* = 3.6 Hz, 1H), 7.63 (d, *J* = 4.8 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 4.4 Hz, 1H), 6.55 (t, *J* = 6.0 Hz, 1H), 6.38 (d, *J* = 8.4 Hz, 1H), 4.91 (br s, 1H), 3.80 (t, *J* = 6.0 Hz, 2H), 3.26 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 192.2, 158.0, 147.7, 144.0, 137.0, 133.6, 132.0, 127.9, 112.6, 107.9, 53.2, 38.7, 36.7; HRMS (ESI): Exact mass calcd for C₁₂H₁₂N₂OS [M+H]⁺, 233.0743; Found: 233.0742.

1-(pyridin-2-ylamino)pentan-3-one (1p)

Yield: 75%. Mp 78-79 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.09-8.07 (m, 1H), 7.38-7.35 (m, 1H), 6.57-6.53 (m, 1H), 6.36 (d, *J* = 7.5 Hz, 1H), 4.91 (br s, 1H), 3.66-3.59 (m, 2H), 2.77-2.73 (m, 2H), 2.48-2.41 (m, 2H), 1.09-1.03 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 211.0, 158.4, 147.9, 137.2, 112.7, 107.7, 41.7, 36.4, 36.2, 7.6; HRMS (ESI): Exact mass calcd for C₁₀H₁₄N₂O [M+H]⁺, 179.1106; Found: 179.1110.

4,4-dimethyl-1-(pyridin-2-ylamino)pentan-3-one (1q)

Yield: 43%. Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 8.08-8.05 (m, 1H), 7.39-7.33 (m, 1H), 6.55-6.51 (m, 1H), 6.35 (d, J = 8.4 Hz, 1H), 4.89 (br s, 1H), 3.60 (t, J = 6.0 Hz, 2H), 2.81 (t, J = 6.0 Hz, 2H), 1.11 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 215.9, 158.3, 147.9, 137.2, 112.7, 107.7, 44.2, 36.6, 36.1, 26.2; HRMS (ESI): Exact mass calcd for C₁₂H₁₈N₂O [M+H]⁺, 207.1492; Found: 207.1494.

methyl 3-(pyridin-2-ylamino)propanoate (1r)

Yield: 56%. Mp 53-55 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.08 (d, *J* = 3.9 Hz, 1H), 7.42-7.36 (m, 1H), 6.59-6.55 (m, 1H), 6.39 (d, *J* = 8.4 Hz, 1H), 4.94 (br s, 1H), 3.69-3.66 (m, 5H), 2.65 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 173.0, 158.2, 148.0, 137.3, 113.0, 107.7, 51.7, 37.3, 34.0; HRMS (ESI): Exact mass calcd for C₉H₁₂N₂O₂ [M+H]⁺, 181.0977; Found: 181.0978.

phenyl-3-(quinolin-2-ylamino)propan-1-one (1s)

Yield: 77%. Mp 127-128 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.03 (d, J = 6.9 Hz, 2H), 7.80-7.72 (m, 2H), 7.59-7.48 (m, 5H), 7.29-7.23 (m, 1H), 6.61 (d, J = 8.7 Hz, 1H), 5.27 (br s, 1H), 4.04 (d, J = 5.7 Hz, 2H), 3.44 (t, J = 5.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 200.0, 156.4, 148.0, 137.1, 136.7, 133.3, 129.4, 128.6, 128.1, 127.4, 126.2, 123.4, 122.0, 112.4, 38.3, 36.3; HRMS (ESI): Exact mass calcd for C₁₈H₁₆N₂O [M+H]⁺, 277.1335; Found: 277.1339.

1-phenyl-3-(pyrimidin-2-ylamino)propan-1-one (1t)

Yield: 68%. Mp 94-96 °C. Pale yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 8.25 (d, *J* = 4.8 Hz, 2H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.56-7.53 (m, 1H), 7.45-7.43 (m, 2H), 6.51-6.50 (m, 1H), 5.66 (br s, 1H), 3.87 (t, *J* = 6.0 Hz, 2H), 3.31 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 199.2, 162.1, 158.1, 136.7, 133.2, 128.6, 128.0, 110.5, 38.2, 36.3; HRMS (ESI): Exact mass calcd for C₁₃H₁₃N₃O [M+H]⁺, 228.1132; Found: 228.1130.

phenyl-3-(pyridazin-3-ylamino)propan-1-one (1u)

Yield: 45%. Mp 126-127 °C. Pale yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 8.54 (d, J = 4.5 Hz, 1H), 8.00-7.97 (m, 2H), 7.62-7.56 (m, 1H), 7.51-7.45 (m, 2H), 7.12 (t, J = 4.5 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 3.42 (t, J = 4.5 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 3.42 (t, J = 4.5 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 3.42 (t, J = 4.5 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 3.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 3.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 3.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 5.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 5.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 5.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 5.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H), 4.04-3.98 (m, 2H), 5.42 (t, J = 4.5 Hz, 1H), 5.16 (br s, 1H),

5.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 199.8, 158.6, 143.6, 136.6, 133.5, 128.7, 128.1, 114.4, 37.7, 36.4; HRMS (ESI): Exact mass calcd for C₁₃H₁₃N₃O [M+H]⁺, 228.1131; Found: 228.1130.

3-(benzo[d]thiazol-2-ylamino)-1-phenylpropan-1-one (1v)

Yield: 51%. Mp 137-138 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.01-7.97 (m, 2H), 7.63-7.56 (m, 3H), 7.51-7.45 (m, 2H), 7.33-7.28 (m, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 5.98 (br s, 1H), 3.96 (t, *J* = 5.7 Hz, 2H), 3.44 (t, *J* = 5.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 199.2, 166.7, 152.5, 136.4, 133.6, 130.5, 128.7, 128.1, 125.9, 121.7, 120.8, 118.9, 39.8, 37.9; HRMS (ESI): Exact mass calcd for C₁₆H₁₄N₂OS [M+H]⁺, 283.0900; Found:283.0899.

3. General procedure and product characterization

3.1 General procedure

Typical procedure for I₂-catalyzed intramolecular α -amination of carbonyl compounds to 3-acylimidazo[1,2-*a*]pyridines **2a-2v**.

Procedure: A reaction tube was equipped with a magnetic stir bar and successively charged with a mixture of **1a-1v** (0.2 mmol), I₂ (20 mol%) and H₂O₂ (0.4 mmol, 30 wt.% in H₂O) and was stirred at 80 °C in air for 0.5-6 h. [*Caution*: H₂O₂ is slightly unstable, so it should be kept at 2-8 °C; H₂O₂ also has certain dangerousness to the human, so, if it touches your skin or eyes, please splash it with warm water as soon as possible.] After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and excess I₂ was quenched with a saturated aqueous solution of Na₂S₂O₃. Then EtOAc (20 mL) was added to the solution and

washed with brine, dried over Na_2SO_4 , concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the targeted product **2a-2v**.

3.2 Product Characterization

imidazo[1,2-a]pyridin-3-yl(phenyl)methanone (2a)¹

Yield: 88%. Mp 104-105 °C. White solid. ¹H NMR (400 MHz, CDCl₃): δ 9.75 (d, *J* = 6.8 Hz, 1H), 8.21 (s, 1H), 7.89-7.80 (m, 3H), 7.63-7.52 (m, 4H), 7.16 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 184.7, 149.0, 145.5, 139.2, 131.9, 129.3, 128.8, 128.7, 128.5, 123.5, 117.6, 115.0.

(6-methylimidazo[1,2-*a*]pyridin-3-yl)(phenyl)methanone (2b)

Yield: 81%. Mp 101-103 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.58 (s, 1H), 8.17 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.64-7.51 (m, 3H), 7.42 (d, *J* = 9.0 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 184.8, 148.1, 145.6, 139.4, 132.4, 131.9, 128.8, 128.6, 126.9, 125.3, 123.3, 116.9, 18.4; HRMS (ESI): Exact mass calcd for C₁₅H₁₂N₂O [M+H]⁺, 237.1022; Found: 237.1030.

(6-fluoroimidazo[1,2-*a*]pyridin-3-yl)(phenyl)methanone (2c)

Yield: 74%. Mp 122-124 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.79-9.77 (m, 1H), 8.26 (s, 1H), 7.92-7.88 (m, 2H), 7.84-7.78 (m, 1H), 7.67-7.46 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 184.9, 155.4, 153.8, 145.9, 138.9, 132.3, 128.8, 128.7, 121.0, 120.8, 118.0, 117.9, 116.3, 116.0; HRMS (ESI): Exact mass calcd for C₁₄H₉FN₂O [M+H]⁺, 241.0772; Found: 241.0770.

(6-chloroimidazo[1,2-*a*]pyridin-3-yl)(phenyl)methanone (2d)

Yield: 67%. Mp 132-133 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.86 (s, 1H), 8.23 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.77 (d, *J* = 9.3 Hz, 1H), 7.67-7.52 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 184.8, 145.6, 138.9, 132.3, 130.6, 128.8, 128.7, 126.9, 123.7, 123.6, 118.0; HRMS (ESI): Exact mass calcd for C₁₄H₉ClN₂O [M+H]⁺, 257.0476; Found: 257.0473.

(6-bromoimidazo[1,2-a]pyridin-3-yl)(phenyl)methanone (2e)¹

Yield: 82%. Mp 144-145 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.96 (s, 1H), 8.21 (s, 1H), 7.89 (d, *J* = 6.0 Hz, 2H), 7.74-7.54 (m, 5H); ¹³C NMR (150 MHz, CDCl₃): δ 184.8, 145.5, 138.8, 132.8, 132.3, 129.0, 128.8, 128.7, 118.2, 110.1.

phenyl(6-(trifluoromethyl)imidazo[1,2-*a*]pyridin-3-yl)methanone (2f)

Yield: 48%. Mp 148-149 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 10.16 (s, 1H), 8.33 (s, 1H), 7.96-7.90 (m, 3H), 7.73-7.64 (m, 2H), 7.61-7.55 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 185.0, 148.8, 146.3, 138.6, 132.6, 128.9, 128.8, 127.9, 127.8, 125.2, 125.0, 124.2, 121.4, 119.7, 119.2, 118.5, 53.4; HRMS (ESI): Exact mass calcd for C₁₅H₉F₃N₂O [M+H]⁺, 291.0740; Found: 291.0740.

methyl 3-benzoylimidazo[1,2-*a*]pyridine-6-carboxylate (2g)

Yield: 67%. Mp 126-128 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 10.43 (s, 1H), 8.30 (s, 1H), 8.13 (d, *J* = 9.3 Hz, 1H), 7.94-7.91 (m, 2H), 7.85 (d, *J* = 9.3 Hz, 1H), 7.67-7.55 (m, 3H), 4.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 184.8, 164.9, 146.6, 138.7, 132.5, 132.4, 129.1, 128.9, 128.7, 119.1, 117.2, 52.7, 29.7; HRMS (ESI): Exact mass calcd for C₁₆H₁₂N₂O₃ [M+H]⁺, 281.0921; Found: 281.0919.

(7-methylimidazo[1,2-*a*]pyridin-3-yl)(phenyl)methanone (2h)

Yield: 93%. Mp 135-136 °C. Pale yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 9.62 (d, J = 7.2 Hz, 1H), 8.16 (s, 1H), 7.89-7.86 (m, 2H), 7.64-7.51 (m, 4H), 7.00 (d, J = 5.4 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 184.5, 149.6, 146.0, 141.1, 139.4, 131.9, 128.8, 128.5, 128.0, 123.3, 117.6, 116.4, 21.6; HRMS (ESI): Exact mass calcd for C₁₅H₁₂N₂O [M+H]⁺, 237.1022; Found: 237.1033.

(7-methoxyimidazo[1,2-*a*]pyridin-3-yl)(phenyl)methanone (2i)

Yield: 82%. Mp 84-86 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.56 (d, *J* = 7.5 Hz, 1H), 8.10 (s, 1H), 7.86 (d, *J* = 6.6 Hz, 2H), 7.63-7.50 (m, 3H), 7.07 (s, 1H), 6.82 (d, *J* = 7.5 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 184.2, 161.1, 151.4,

146.4, 139.4, 131.8, 129.4, 128.7, 128.5, 123.2, 109.1, 95.8, 55.8; HRMS (ESI): Exact mass calcd for C₁₅H₁₂N₂O₂ [M+H]⁺, 253.0576; Found: 253.0580. **imidazo[1,2-***a***]pyridin-3-yl(m-tolyl)methanone (2j)**

Yield: 91%. Mp 123-125 °C. White solid. ¹H NMR (400 MHz, CDCl₃): δ 9.75 (d, *J* = 6.8 Hz, 1H), 8.21 (s, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 7.68-7.66 (m, 2H), 7.57-7.53 (m, 1H), 7.42 (d, *J* = 4.8 Hz, 2H), 7.15 (t, *J* = 6.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 185.1, 149.1, 145.6, 139.3, 138.5, 132.8, 129.3, 128.9, 128.4, 126.0, 117.7, 115.0, 21.4; HRMS (ESI): Exact mass calcd for C₁₅H₁₂N₂O [M+H]⁺, 237.1022; Found: 237.1020.

imidazo[1,2-*a*]pyridin-3-yl(p-tolyl)methanone (2k)

Yield: 89%. Mp 120-122 °C. White solid. ¹H NMR (400 MHz, CDCl₃): δ 9.73 (d, *J* = 6.8 Hz, 1H), 8.21 (s, 1H), 7.81 (t, *J* = 4.0 Hz, 3H), 7.56-7.52 (m, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.2 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 184.6, 148.9, 145.2, 142.6, 136.5, 129.1, 128.9, 128.8, 123.5, 117.6, 114.8, 53.3; HRMS (ESI): Exact mass calcd for C₁₅H₁₂N₂O [M+H]⁺, 237.1022; Found: 237.1021.

(4-fluorophenyl)(imidazo[1,2-*a*]pyridin-3-yl)methanone (2l)

Yield: 93%. Mp 174-176 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.74 (d, *J* = 6.9 Hz, 1H), 8.21 (s, 1H), 7.96-7.91 (m, 2H), 7.84 (d, *J* = 9.0 Hz, 1H), 7.61-7.56 (m, 1H), 7.28-7.16 (m, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 183.3, 181.0, 166.8, 163.5, 157.4, 149.2, 145.4, 135.5, 131.3, 131.2, 129.5, 128.9, 123.4, 117.8, 115.9, 115.6, 115.2, 94.0; HRMS (ESI): Exact mass calcd for C₁₄H₉FN₂O [M+H]⁺, 241.0771; Found:

241.0776.

(4-chlorophenyl)(imidazo[1,2-*a*]pyridin-3-yl)methanone (2m)

Yield: 80%. Mp 129-130 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.74 (d, *J* = 6.9 Hz, 1H), 8.21 (s, 1H), 7.87-7.82 (m, 3H), 7.62-7.51 (m, 3H), 7.18 (t, *J* = 6.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 183.4, 149.2, 145.6, 138.4, 137.5, 130.2, 129.6, 128.9, 123.3, 117.8, 115.3, 110.0; HRMS (ESI): Exact mass calcd for C₁₄H₉ClN₂O [M+H]⁺, 257.0476; Found: 257.0471.

(4-bromophenyl)(imidazo[1,2-*a*]pyridin-3-yl)methanone (2n)

Yield: 93%. Mp 175-177 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.73 (d, *J* = 7.2 Hz, 1H), 8.20 (s, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.78-7.67 (m, 4H), 7.62-7.56 (m, 1H), 7.19 (t, *J* = 6.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 183.5, 149.2, 148.6, 145.6, 138.0, 137.0, 131.9, 130.3, 129.7, 128.9, 126.9, 123.3, 122.3, 117.8, 115.3; HRMS (ESI): Exact mass calcd for C₁₄H₉BrN₂O [M+H]⁺, 300.9971; Found: 300.9970. **imidazo[1,2-***a***]pyridin-3-yl(thiophen-2-yl)methanone (20)**

Yield: 83%. Mp 126-127 °C. White solid. ¹H NMR (600 MHz, CDCl₃): δ 9.63 (d, *J* = 7.2 Hz, 1H), 8.49 (s, 1H), 7.87 (t, *J* = 4.8 Hz, 1H), 7.79 (d, *J* = 9.0 Hz, 1H), 7.69 (t, *J* = 4.8 Hz, 1H), 7.54-7.51 (m, 1H), 7.25-7.20 (m, 1H), 7.11 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 175.7, 149.0, 143.9, 143.7, 132.6, 131.9, 131.8, 129.4, 129.3, 128.9, 128.7, 128.1, 127.9, 123.2, 117.8, 115.2, 114.9; HRMS (ESI): Exact mass calcd for C₁₂H₈N₂OS [M+H]⁺, 229.0430; Found: 229.0433.

1-(imidazo[1,2-*a*]pyridin-3-yl)propan-1-one (2p)

Yield: 56%. Mp 127-129 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.69 (d, J = 6.9 Hz, 1H), 8.38 (s, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.53-7.48 (m, 1H), 7.10 (t, J = 6.9 Hz, 1H), 2.99 (t, J = 7.5 Hz, 2H), 1.31 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 191.1, 142.5, 128.9, 128.7, 117.6, 115.0, 32.6, 9.0; HRMS (ESI): Exact mass calcd for C₁₀H₁₀N₂O [M+H], 175.0866; Found: 175.0869.

1-(imidazo[1,2-*a*]pyridin-3-yl)-2,2-dimethylpropan-1-one (2q)

Yield: 97%. Mp 137-139 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 9.80 (d, J = 6.9 Hz, 1H), 8.51 (s, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.08 (t, J = 6.9 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 197.1, 142.5, 129.3, 128.7, 117.5, 114.8, 44.1, 28.7; HRMS (ESI): Exact mass calcd for C₁₂H₁₄N₂O [M+H]⁺, 203.1179; Found: 203.1178.

imidazo[1,2-a]quinolin-1-yl(phenyl)methanone (2s)

Yield: 90%. Mp 157-158 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.46 (d, J = 8.7 Hz, 1H), 8.10 (d, J = 7.2 Hz, 2H), 8.01 (s, 1H), 7.91-7.84 (m, 2H), 7.73-7.65 (m, 3H), 7.62-7.54 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 184.3, 149.3, 146.5, 138.6, 133.1, 131.5, 130.1, 129.1, 129.0, 128.6, 125.8, 124.7, 119.9, 116.8, 100.0; HRMS (ESI): Exact mass calcd for C₁₈H₁₂N₂O [M+H]⁺, 273.1022; Found: 273.1019.

imidazo[1,2-a]pyrimidin-3-yl(phenyl)methanone (2t)

Yield: 74%. Mp 215-216 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 10.01 (d, J =

6.9 Hz, 1H), 8.85 (d, J = 4.2 Hz, 1H), 8.43 (s, 1H), 7.94-7.90 (m, 2H), 7.70-7.55 (m, 3H), 7.28-7.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 185.2, 153.7, 151.5, 146.4, 138.3, 136.7, 132.6, 128.9, 128.8, 121.8, 111.3; HRMS (ESI): Exact mass calcd for C₁₃H₉N₃O [M+H]⁺, 224.0818; Found: 224.0817.

imidazo[1,2-b]pyridazin-3-yl(phenyl)methanone (2u)

Yield: 83%. Mp 140-142 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.69 (d, J = 4.5 Hz, 1H), 8.23 (s, 1H), 8.15 (d, J = 9.3 Hz, 1H), 7.96 (d, J = 6.9 Hz, 2H), 7.69-7.53 (m, 3H), 7.35 (t, J = 4.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 183.5, 144.6, 143.2, 142.7, 138.7, 132.7, 129.4, 128.6, 126.7, 126.2, 120.3; HRMS (ESI): Exact mass calcd for C₁₃H₉N₃O [M+H]⁺, 224.0818; Found: 224.0816.

benzo[d]imidazo[2,1-b]thiazol-3-yl(phenyl)methanone (2v)

Yield: 82%. Mp 161-163 °C. White solid. ¹H NMR (300 MHz, CDCl₃): δ 8.97 (d, J = 8.7 Hz, 1H), 7.99-7.95 (m, 2H), 7.86 (s, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.69-7.63 (m, 1H), 7.59-7.52 (m, 3H), 7.45 (t, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 183.5, 147.1, 138.5, 132.6, 129.3, 128.6, 126.6, 125.7, 123.7, 118.2; HRMS (ESI): Exact mass calcd for C₁₆H₁₀N₂OS [M+H]⁺, 279.0587; Found: 279.0591.

4. Diversification of 3-acylimidazo[1,2-a]pyridines

3-benzylimidazo[1,2-a]pyridine (3)²

A mixture of 2a (0.2 mmol) and 80% hydrazine hydrate (2 equiv.) in toluene (1 mL)

was taken in a flame-dried Schlenk tube and placed in a commercial microwave oven operating at 2450 MHz frequency. After irradiation of the mixture for 20 mins., (monitored by TLC) it was cooled to room temperature, extracted with chloroform and dried over anhydrous Na₂SO₄. Removal of solvent gave the hydrazone. Then a mixture of the obtained hydrazone and KOH (1.4 mmol) were taken in a flame-dried Schlenk tube and placed in a microwave oven. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and EtOAc (20 mL) was added to the solution and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the targeted product **3**. Yield: 77%. White semisolid. ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, *J* = 6.9 Hz, 1H), 7.64 (d, *J* = 9.0 Hz, 1H), 7.48 (s, 1H), 7.32-7.26 (m, 3H), 7.22-7.16 (m, 3H), 6.74 (t, *J* = 6.9 Hz, 1H), 4.27 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 145.8, 136.6, 132.6, 128.8, 128.3, 126.9, 123.6, 123.2, 122.5, 117.9, 112.1, 30.3; HRMS (ESI): Exact mass calcd for C₁₄H₁₂N₂ [M+H]⁺, 209.1079; Found: 209.1082.

2-bromo-1-(imidazo[1,2-a]pyridin-3-yl)propan-1-one (4)³

N-bromosuccinimide (NBS, 1.2 equiv.) and and *p*-toluenesulfonic acid ($T_SOH.H_2O$, 0.2 equiv.) was added to a solution of **2p** (0.2 mmol) in anhydrous CH₃CN (1 mL) at room temperature. After the addition, the reaction mixture was warmed to 60 °C and stirred for 4 h. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and EtOAc (20 mL) was added to the solution and washed successively with H₂O, saturated NaHCO₃ solution, brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the targeted product **4**. Yield: 86%. Mp 185-187 °C. White solid. 1H NMR (300 MHz, CDCl₃): δ 9.65 (d, *J* = 6.9 Hz, 1H), 8.50 (s, 1H), 7.82 (d, *J* = 9.0 Hz, 1H), 7.57 (t, *J* = 6.9 Hz, 1H), 7.17 (t, *J* = 6.9 Hz, 1H), 5.24 (t, *J* = 6.9 Hz, 1H), 1.96 (d, *J* = 6.6 Hz, 3H); 13C NMR (75 MHz, CDCl₃): δ 183.7, 149.5, 143.6, 129.8, 129.0, 121.1, 117.9, 115.6, 42.9, 20.5; HRMS (ESI): Exact mass calcd for C₁₀H₉BrN₂O [M+H]⁺, 252.9977; Found: 252.9974.

1-(imidazo[1,2-a]pyridin-3-yl)-2-phenylpropan-1-one (5)⁴

To a flame-dried Schlenk flask were added KOtBu (5.0 equiv.) and 2p (2.0 equiv.). The flask was evacuated and backfilled with argon 3 times, then iodobenzene (0.1 mmol) was dissolved in dry DMF (1 mL) then was added by syringe, and the mixture was allowed to stir for 10 minutes at room temperature. The reaction mixture was stirred and heated at 60 °C for 13 h. After allowing the reaction to cool to room temperature, 1N HCl (2 mL) was added and the mixture was allowed to stir for 10 minutes at room temperature. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and EtOAc (20 mL) was added to the solution and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the targeted product 5. Yield: 54%. Mp 169-171 °C. White solid. 1H NMR (300 MHz, CDCl₃): δ 9.70 (d, J = 6.9 Hz, 1H), 8.40 (s, 1H), 7.74 (d, J = 9.0 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 7.5 Hz, 2H), 7.36-7.21 (m, 3H), 7.08 (t, J = 6.6 Hz, 1H), 4.58 (t, J = 6.9 Hz, 1H), 1.63 (d, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl₃): δ 190.6, 148.8, 143.3, 141.6, 138.6, 129.1, 128.9, 127.6, 127.1, 123.2, 117.7, 115.0, 49.1, 18.7; HRMS (ESI): Exact mass calcd for C₁₆H₁₄N₂O [M+H]⁺, 251.1184; Found: 251.1187.

1-(imidazo[1,2-a]pyridin-3-yl)-2-methylprop-2-en-1-one (6)⁵

In a Schlenk tube of 25 mL, DABCO (0.5 equiv.) and **2p** (0.2 mmol) were dissolved in DMSO (1.0 mL) and stirred at room temperature for 1 minutes. Then $K_2S_2O_8$ (2 equiv.) were added. The mixture was stirred at 120 °C for 20 h under Ar atmosphere. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to

room temperature and EtOAc (20 mL) was added to the solution and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the targeted product **6**. Yield: 74%. Mp 165-167 °C. Pale yellow solid. 1H NMR (300 MHz, CDCl₃): δ 9.63 (d, *J* = 6.9 Hz, 1H), 8.28 (s, 1H), 7.79 (d, *J* = 9.0 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.12 (t, *J* = 6.9 Hz, 1H), 5.77 (s, 2H), 2.13 (s, 3H); 13C NMR (75 MHz, CDCl₃): δ 186.7, 149.3, 144.9, 129.2, 128.8, 123.1, 122.7, 117.7, 115.0, 18.8; HRMS (ESI): Exact mass calcd for C₁₁H₁₀N₂O [M+H]⁺, 187.0871; Found: 187.0868.

1-(imidazo[1,2-a]pyridin-3-yl)-2-morpholinopropan-1-one (7)³

N-bromosuccinimide (NBS, 1.2 equiv.) and and *p*-toluenesulfonic acid (T_SOH.H₂O, 0.2 equiv.) was added to a solution of 2p (0.2 mmol) in anhydrous CH₃CN (1 mL) at room temperature. After the addition, the reaction mixture was warmed to 60 °C and stirred for 4 h. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and EtOAc (20 mL) was added to the solution and washed succesively with H₂O, saturated NaHCO₃ solution, brine, dried over Na₂SO₄, concentrated under reduced pressure to give 4, which was used for the next step without purification. Then to the mixture of K₂CO₃ (2.5 equiv.) and morpholine (3.0 equiv.) in CH₃CN (0.5 mL), 4 in CH₃CN (0.3 mL) was added slowly. After the addition, the reaction mixture was stirred until the reaction was completed at room temperature. EtOAc (20 mL) was added to the solution and washed with brine, dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) to afford the targeted product 7. Yield: 72%. Mp 178-180 °C. White solid. 1H NMR (300 MHz, CDCl₃): δ 9.70 (d, J = 6.9 Hz, 1H), 8.76 (s, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.51 (t, J = 6.9 Hz, 1H), 7.10 (t, J = 6.9 Hz, 1H), 3.78 (t, J = 6.6 Hz, 1H), 3.74-3.70 (m, 4H), 2.72-2.65 (m, 2H), 2.61-2.54 (m, 2H), 1.38 (d, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl₃): δ 191.2, 148.7, 143.9, 129.3, 128.9, 122.8, 117.7, 115.2, 67.4, 67.1, 50.7, 13.7; HRMS (ESI): Exact mass calcd for C₁₄H₁₇N₃O₂ [M+H]⁺, 260.1399; Found: 260.1393.

1-(imidazo[1,2-a]pyridin-3-yl)-2-iodopropan-1-one (8)⁶

N-bromosuccinimide (NBS, 1.2 equiv.) and and p-toluenesulfonic acid (T_SOH.H₂O, 0.2 equiv.) was added to a solution of 2p (0.2 mmol) in anhydrous CH₃CN (1 mL) at room temperature. After the addition, the reaction mixture was warmed to 60 °C and stirred for 4 h. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and EtOAc (20 mL) was added to the solution and washed succesively with H₂O, saturated NaHCO₃ solution, brine, dried over Na₂SO₄, concentrated under reduced pressure to give 4, which was used for the next step without purification. A solution of sodium iodide (1.1 equiv.) in anhydrous acetone (0.5 mL) was added to a solution of 4 in the same solvent (0.5 mL). The formation of sodium bromide precipitate is observed instantly. The reaction was stirred at rt for 10 min and, then, filtered. Removal of the solvent under reduced pressure afforded the expected product 8. No further purification was needed. Yield: 76%. Mp 195-197 °C. White solid. 1H NMR (300 MHz, CDCl₃): δ 9.63 (d, J = 6.9 Hz, 1H), 8.47 (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.59-7.50 (m, 1H), 7.18-7.12 (m, 1H), 5.45 (t, J = 6.9 Hz, 1H), 2.10 (d, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl₃): δ 185.3, 149.4, 143.6, 143.1, 129.8, 129.6, 129.0, 120.1, 117.9, 115.6, 115.5, 43.0, 18.7; HRMS (ESI): Exact mass calcd for C₁₀H₉IN₂O [M+H]⁺, 300.9769; Found: 300.9765.

5. Contral Experiments

6. References

- (a) N. Chernyak, V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2743; (b) H. G. Wang, Y. Wang, D. D. Liang, L. Y. Liu, J. C. Zhang, Q. Zhu, Angew. Chem., Int. Ed., 2011, 50, 5677; (c) L. J. Ma, X. P. Wang, W. Yu, B. Han, Chem. Commun., 2011, 47, 11333; (d) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han, A. Lei, Chem. Commun., 2012, 48, 11073; (e) D. Chandra Mohan, S. N. Rao, S. Adimurthy, J. Org. Chem., 2013, 78, 1266; (f) H. Cao, X. Liu, J. Liao, J. Huang, H. Qiu, Q. Chen, Y. Chen, J. Org. Chem., 2014, 79, 11209; (g) H. Zhan, L. Zhao, J. Liao, N. Li, Q. Chen, S. Qiu, H. Cao, Adv. Synth. Catal., 2015, 357, 46; (h) K. R. Reddy, A. P. Gupta, P. Das, Asian J. Org. Chem., 2016, 5, 900.
- 2. S. Gadhwal, M. Baruah, J. S. Sandhu, Synlett, 1999, 10, 1573.
- 3. W. Wu, C. You, Y. Liu, X.-Q. Dong, X. Zhang, Org. Lett., 2017, 19, 2548.
- 4. M. Pichette Drapeau, I. Fabre, L. Grimaud, I. Ciofini, T. Ollevier, M. Taillefer, *Angew. Chem., Int. Ed.*, 2015, **54**, 10587.
- Y. Liu, X. Zhan, P. Ji, J. Xu, Q. Liu, W. Luo, T. Chen, C. Guo, *Chem. Commun.*, 2017, **53**, 5346.
- V. Estévez, V. Sridharan, S. Sabaté, M. Villacampa, J. C. Menéndez, Asian J. Org. Chem., 2016, 5, 652.

7. Copies of 1H NMR and 13C NMR Spectra

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

