Preparation of Ni based mesoporous Al₂O₃ catalyst with enhanced CO₂

methanation performance

Jianghui Lin^{1†}, Caiping Ma^{2,3†}, Luo Jing⁴, Xianghui Kong¹, Yanfei Xu¹, Guangyuan

Ma¹, Jie Wang¹, Chenghua Zhang^{5*}, Zhengfeng Li¹, Mingyue Ding^{1,6*}

¹School of Power and Mechanical Engineering, Hubei International Scientific and

Technological Cooperation Base of Sustainable Resource and Energy, Wuhan

University, Wuhan 430072, China

²State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

³University of Chinese Academy of Sciences, Beijing 100049, China

⁴Xiamen Tobacco Industrial CO., LTD, Xiamen 361022, China

⁵Synfuels China Co. Ltd., Beijing 101407, China

⁶Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

[†]These authors contributed equally to this work.

*Corresponding author

E-mail address: <u>dingmy@whu.edu.cn</u> (Mingyue Ding); <u>zhangchh@sxicc.ac.cn</u> (Chenghua Zhang).

Catalysts	$S_{BET}{}^a(m^2{\cdot}g^{\text{-}1})$	D _p ^b (nm)	$\operatorname{CO}_2^{\operatorname{c}}\operatorname{con.}(\%)$	CH ₄ ^c sel. (%)	Ref
25Ni/MA	237.0	3.1	77.2	99.9	This paper
25Ni/CA	166.2	4.7	72.6	99.5	This paper
25Ni/Al ₂ O ₃	188.3	8.1	73.0	99.0	1

Table 1s Comparison of catalysts with different pore sizes

a Surface area of the support.

b Pore diameter of the support.

c The reaction temperature is 350-360 °C.

methanation								
Catalysts	T/℃	P/atm	$CO_2 \text{ con.}/\%$	CH ₄ sel./%	Ref.			
Ni/CA	380	1.0	73.6	99.4	This paper			
Ni/MA	360	1.0	77.2	99.9	This paper			
Ni/Al ₂ O ₃	400	_	70.5	69.5	2			
Ni/SiO ₂	400	_	67.5	65.5	2			
Ni/TiO ₂	450	1.0	64.0	97.5	3			
Ni/MgO	450	1.0	60.0	96.5	3			
Ni/CeO ₂ -ZrO ₂	350	1.0	67.9	98.4	4			

Table 2s Comparison of as-prepared catalyst and other typical catalysts for CO_2

Fig. 1s Deactivation test of the 25Ni/CA and 25Ni/MA catalyst at 400 °C, GHSV =

6000 ml·g⁻¹·h⁻¹, H₂/CO₂ = 4, 1 atm.

Fig. 2s Reusability test of the 25Ni/MA catalyst at 400 °C, GHSV = $6000 \text{ ml} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$,

 $H_2/CO_2 = 4$, 1atm.

References

- 1 S. Rahmani, M. Rezaei and F. Meshkani, J. Ind. Eng. Chem., 2014, 20, 1346-1352.
- 2 X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng and C. Li, Energy and Fuels, 2018, **32**, 3681-3689.
- 3 S. Tada, T. Shimizu, H. Kameyama, T. Haneda and R. Kikuchi, *Int. J. Hydrogen Energy*, 2012, **37**, 5527-5531.
- P. A. U. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P.
 Bazin, S. Thomas and A. C. Roger, Catal. Today, 2013, 215, 201-207.