Supplementary Materials

Fabrication of graphite via electrochemical conversion of CO₂ in

CaCl₂ based molten salt at a relative low temperature

Liwen Hu^{a,b*}, Wanlin Yang^a, Zhikun Yang^a, Jian Xu^{a,b}

- a. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- b. Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced Materials, Chongqing University, Chongqing 400044, China
- * Corresponding author: lwh0423@cqu.edu.cn

Fig. S1 Electrochemical apparatus used for graphite deposition in this research.

Fig. S2 The cell-voltage versus time curves during initial three pulses for each condition.

Fig. S3 Photos of the cathode and anode before and after electrolysis

Fig. S4 XRD pattern of 8Ni•2TiO₂ before sintered, after sintered and after electrolysis.

Fig. S5 SEM images of PC-4 (a, b) and PC-5 (c, d)

Fig. S6 XPS spectra for C 1s of PC-1, PC-2, PC-3 and DC-1

Sample Element	PC-1	PC-2	PC-3	DC-1
C (At%)	82.8	83.0	84.1	82.9
O (At%)	17.2	17.0	15.9	17.1

Table S1 The C and O atom content of samples obtained by pulse current electrolysis