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S1. Volumetric expansion simulation. 

The volumetric expansion data are predicted by Peng-Robinson equation of state (PR-

EoS) with van der Waals’ mixing rules embedded in Aspen Plus® software (see Equation 

S1). The critical parameters and acentric factor are taken from NIST Standard Reference 

Database.1 Since experimental VLE data for 1-octene+n-butane binary system is not 

available in the literature, we use published VLE data on 1-octane+n-butane binary2 to 

estimate the binary interaction parameters for k1-octene/n-butane as an approximation (Table 

S1). The simulation method used here has been previously demonstrated to satisfactorily 

predict the volumetric expansion as well as VLE data for CO2- and propane-expanded 

solvent systems.3,4,5

𝑃 =
𝑅𝑇

(𝑉 ‒ 𝑏)
‒

𝑎(𝑇)
𝑉(𝑉 + 𝑏) + 𝑏(𝑉 ‒ 𝑏)

       (Equation S1)
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where ,  and  represents the critical temperature, critical pressure and acentric 𝑇𝑐 𝑃𝑐 𝜔

factor, respectively



For multicomponens system, the van der Waals’ mixing rules and binary interaction 

parameters are used for the mixtures as follows.
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where 𝑎𝑖𝑗 = 𝑎𝑖𝑎𝑗(1 ‒ 𝑘𝑖𝑗)

and is the binary interaction parameter.𝑘𝑖𝑗 

Table S1: Critical temperature Tc, critical pressure Pc, acentric factor ω and binary 

interaction parameters of the binary components

Substance Tc (°C) Pc (MPa) ω kij

n-butane 152.01 3.794 0.199

1-Octene 293.43 2.675 0.395
-0.088



S2. Calculation of carbon and hydrogen balance deficit

The carbon balance deficit is estimated by calculating the moles of syngas consumed 

(from the observed pressure drop in the syngas reservoir) and comparing the value with the 

moles of hydrogen and carbon added in the products. Each mole of nonanol formed 

consumes 2 moles of hydrogen and 1 mole of carbon monoxide.  Each mole of nonanal 

formed consumes 1 mole of hydrogen and 1 mole of carbon monoxide.  Each mole of 

octane formed consumes 1 mole of hydrogen. A sample calculation for carbon and 

hydrogen balances at 180°C and 6.0 MPa (Table 3, Entry #6) is shown below.

The moles of syngas depletion were calculated from the pressure decrease ( ) in the ∆𝑃

reservoir and the reservoir temperature. The volume of the external reservoir (Vres) is 300 

ml.  The reservoir exists at room temperature (Tres). R is the gas constant.

 =  
𝑁𝑠𝑦𝑛𝑔𝑎𝑠 =

∆𝑃 ∗ 𝑉𝑟𝑒𝑠

𝑅 ∗ 𝑇𝑟𝑒𝑠

1573 𝑘𝑃𝑎 ∗ 0.3 𝐿

8.314 (𝐿·𝑘𝑃𝑎·𝐾 ‒ 1·𝑚𝑜𝑙 ‒ 1) ∗ 293.15𝐾
= 193.6 𝑚𝑚𝑜𝑙

Table S2: Sample calculation of carbon and hydrogen balance deficit

Compound
Measured 

value
CO H2

Syngas depletion from reservoir / mmol 193.6 - -

Measured nonanal formation/ mmol 0 0 0

Measured nonanol fomation/ mmol 58.2 58.2 116.4

Measured octane formation / mmol 11.2 0 11.2

CO 58.2

H2 127.6
H2 and CO addition to the product / 

mmol
H2 + CO 185.8



T=180°C, P = 6.0 MPa, H2/CO = 2:1; [Co] = 1000 ppm, 

The carbon and hydrogen balance deficit for all the runs are summarized in Table S3.

Table S3.  Carbon and hydrogen balance deficits for various runs

carbon and hydrogen balance deficit:

= 𝑛𝑑𝑒𝑓𝑖𝑐𝑖𝑡

193.6 ‒ 185.8
193.6

∗ 100% = 3.99 %

System
H2 and CO 

addition to the 
product, mmol

Syngas depletion from 
reservoir, mmol , %𝑛𝑑𝑒𝑓𝑖𝑐𝑖𝑡

Table 2 in Main Text
Entry 1 184.6 189.4 2.55

Table 3 in Main Text
Entry 1 73.6 75.1 1.95
Entry 2 182.7 187.8 2.76
Entry 3 184.9 191.0 3.20
Entry 4 127.3 129.0 1.38
Entry 5 165.3 167.7 1.43
Entry 6 185.9 193.6 3.99
Entry 7 118.0 122.4 3.57
Entry 8 183.8 189.8 3.19
Entry 9 147.5 153.6 3.92
Entry 10 182.8 187.7 2.62
Entry 11 190.2 194.9 2.44

Table 4 in Main Text
Entry 1 186.7 192.4 2.98
Entry 2 189.5 196.1 3.35
Entry 3 191.6 195.5 1.95
Entry 4 136.7 139.9 2.28

Table 5 in Main Text
Entry 1 205.0 207.2 1.08
Entry 2 206.8 211.3 2.13
Entry 3 203.3 208.1 2.30
Entry 4 202.8 209.3 3.10
Entry 5 173.1 176.2 1.75
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